Lower Bounds for q-ary Codes with Large Covering Radius
نویسندگان
چکیده
Let Kq(n,R) denote the minimal cardinality of a q-ary code of length n and covering radius R. Recently the authors gave a new proof of a classical lower bound of Rodemich on Kq(n, n−2) by the use of partition matrices and their transversals. In this paper we show that, in contrast to Rodemich’s original proof, the method generalizes to lower-bound Kq(n, n − k) for any k > 2. The approach is bestunderstood in terms of a game where a winning strategy for one of the players implies the non-existence of a code. This proves to be by far the most efficient method presently known to lower-bound Kq(n,R) for large R (i.e. small k). One instance: the trivial sphere-covering bound K12(7, 3) > 729, the previously best bound K12(7, 3) > 732 and the new bound K12(7, 3) > 878.
منابع مشابه
A note on bounds for q-ary covering codes
Two strongly seminormal codes over 2s are constructed to prove a conjecture of Ostergard. It is shown that a result of Honkala on ( I C , t)-subnormal codes holds also under weaker assumptions. A lower bound and an upper bound on Kq(n, R), the minimal cardinality of a q-ary code of length n with covering radius R are obtained. These give improvements in seven upper bounds and twelve lower bound...
متن کاملLinear codes with covering radius 3
The shortest possible length of a q-ary linear code of covering radius R and codimension r is called the length function and is denoted by q(r, R). Constructions of codes with covering radius 3 are here developed, which improve best known upper bounds on q(r, 3). General constructions are given and upper bounds on q(r, 3) for q = 3, 4, 5, 7 and r ≤ 24 are tabulated.
متن کاملNew Constructions for q-ary Covering Codes
Upper bounds on Kq (n; R), the minimum number of codewords in a q-ary code of length n and covering radius R, are improved. Such bounds are obtained by constructing corresponding covering codes. In particular, codes of length q + 1 are discussed. Good such codes can be obtained from maximum distance separable (MDS) codes. Furthermore, they can often be combined eeectively with other covering co...
متن کاملOn new completely regular q-ary codes
In this paper from q-ary perfect codes new completely regular q-ary codes are constructed. In particular, two new ternary completely regular codes are obtained from ternary Golay [11, 6, 5] code. The first [11, 5, 6] code with covering radius ρ = 4 coincides with the dual Golay code and its intersection array is (22, 20, 18, 2, 1; 1, 2, 9, 20, 22) . The second [10, 5, 5] code, with covering rad...
متن کاملNew Bounds for Linear Codes of Covering Radius 2
The length function lq(r,R) is the smallest length of a q-ary linear code of covering radius R and codimension r. New upper bounds on lq(r, 2) are obtained for odd r ≥ 3. In particular, using the one-to-one correspondence between linear codes of covering radius 2 and saturating sets in the projective planes over finite fields, we prove that
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Electr. J. Comb.
دوره 16 شماره
صفحات -
تاریخ انتشار 2009