Nutrient Excess Stimulates β-Cell Neogenesis in Zebrafish

نویسندگان

  • Lisette A. Maddison
  • Wenbiao Chen
چکیده

Persistent nutrient excess results in a compensatory increase in the β-cell number in mammals. It is unknown whether this response occurs in nonmammalian vertebrates, including zebrafish, a model for genetics and chemical genetics. We investigated the response of zebrafish β-cells to nutrient excess and the underlying mechanisms by culturing transgenic zebrafish larvae in solutions of different nutrient composition. The number of β-cells rapidly increases after persistent, but not intermittent, exposure to glucose or a lipid-rich diet. The response to glucose, but not the lipid-rich diet, required mammalian target of rapamycin activity. In contrast, inhibition of insulin/IGF-1 signaling in β-cells blocked the response to the lipid-rich diet, but not to glucose. Lineage tracing and marker expression analyses indicated that the new β-cells were not from self-replication but arose through differentiation of postmitotic precursor cells. On the basis of transgenic markers, we identified two groups of newly formed β-cells: one with nkx2.2 promoter activity and the other with mnx1 promoter activity. Thus, nutrient excess in zebrafish induces a rapid increase in β-cells though differentiation of two subpopulations of postmitotic precursor cells. This occurs through different mechanisms depending on the nutrient type and likely involves paracrine signaling between the differentiated β-cells and the precursor cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gastrointestinal hormones and the regulation of β-cell mass.

Type 2 diabetes occurs due to a relative deficit in β-cell mass or function. Glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), cholecystokinin (CCK), and gastrin are gastrointestinal hormones that are secreted in response to nutrient intake, regulating digestion, insulin secretion, satiety, and β-cell mass. In this review, we focus upon β-cell mass regulation....

متن کامل

Activation of GPR119 Stimulates Human β-Cell Replication and Neogenesis in Humanized Mice with Functional Human Islets

Using humanized mice with functional human islets, we investigated whether activating GPR119 by PSN632408, a small molecular agonist, can stimulate human β-cell regeneration in vivo. Human islets were transplanted under the left kidney capsule of immunodeficient mice with streptozotocin- (STZ-) induced diabetes. The recipient mice were treated with PSN632408 or vehicle and BrdU daily. Human isl...

متن کامل

Metabolic Regulation of Cellular Plasticity in the Pancreas

Obese individuals exhibit an increase in pancreatic β cell mass; conversely, scarce nutrition during pregnancy has been linked to β cell insufficiency in the offspring [reviewed in 1, 2]. These phenomena are thought to be mediated mainly through effects on β cell proliferation, given that a nutrient-sensitive β cell progenitor population in the pancreas has not been identified. Here, we employe...

متن کامل

Centroacinar Cells Are Progenitors That Contribute to Endocrine Pancreas Regeneration

Diabetes is associated with a paucity of insulin-producing β-cells. With the goal of finding therapeutic routes to treat diabetes, we aim to find molecular and cellular mechanisms involved in β-cell neogenesis and regeneration. To facilitate discovery of such mechanisms, we use a vertebrate organism where pancreatic cells readily regenerate. The larval zebrafish pancreas contains Notch-responsi...

متن کامل

GABA signaling stimulates α-cell-mediated β-like cell neogenesis

Diabetes is a chronic and progressing disease, the number of patients increasing exponentially, especially in industrialized countries. Regenerating lost insulin-producing cells would represent a promising therapeutic alternative for most diabetic patients. To this end, using the mouse as a model, we reported that GABA, a food supplement, could induce insulin-producing beta-like cell neogenesis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 61  شماره 

صفحات  -

تاریخ انتشار 2012