Color-coded real-time subcellular fluorescence imaging of the interaction between cancer and host cells in live mice.

نویسندگان

  • Kensuke Yamauchi
  • Yasunori Tome
  • Norio Yamamoto
  • Katsuhiro Hayashi
  • Hiroaki Kimura
  • Hiroyuki Tsuchiya
  • Katsuro Tomita
  • Michael Bouvet
  • Robert M Hoffman
چکیده

Stromal cells are essential for tumor growth. Stromal cells interact with cancer cells during tumor growth and progression. We report here the development of a tri-color imageable mouse model to visualize the interaction between host cells and cancer cells. To observe subcellular cancer cell dynamics in vivo, HT-1080 human fibrosarcoma cells were labeled in the nucleus with histone H2B-green fluorescent protein (GFP) and with retroviral red fluorescent protein (RFP) in the cytoplasm. HT-1080-GFP-RFP cells were sprinkled over a skin-flap in transgenic GFP immunocompetent mice. After 24 h, the mice were imaged with an Olympus IV100 laser scanning microscope. HT-1080-GFP-RFP cells were visualized surrounded by host-derived lymphocytes and macrophages both expressing GFP. It was possible to observe host GFP macrophages contacting, engulfing, and digesting dual-color HT-1080-GFP-RFP cells in real time. The dual-color cancer cells were readily visible after being engulfed in the GFP macrophages. Other cancer cells were visualized being killed by lymphocytes. The results of this study show that differentially labeling cells with spectrally-distinct fluorescent protein can allow subcellular-resolution imaging of cell-cell interactions between host and cancer cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Whole-body subcellular multicolor imaging of tumor-host interaction and drug response in real time.

To noninvasively image cancer cell/stromal cell interaction in the tumor microenvironment and drug response at the cellular level in live animals in real time, we developed a new imageable three-color animal model. The model consists of green fluorescent protein (GFP)-expressing mice transplanted with dual-color cancer cells labeled with GFP in the nucleus and red fluorescent protein in the cyt...

متن کامل

Development of the transgenic cyan fluorescent protein (CFP)-expressing nude mouse for "Technicolor" cancer imaging.

A major goal for in vivo biology is to develop models which can express multiple colors of fluorescent proteins in order to image many processes simultaneously in real time. Towards this goal, the cyan fluorescent protein (CFP) nude mouse was developed by crossing non-transgenic nude mice with the transgenic CK/ECFP mouse in which the beta-actin promoter drives expression of CFP in almost all t...

متن کامل

Imaging In Mice With Fluorescent Proteins: From Macro To Subcellular

Whole-body imaging with fluorescent proteins has been shown to be a powerfultechnology with many applications in small animals. Brighter, red-shifted proteins can makewhole-body imaging even more sensitive due to reduced absorption by tissues and less scatter.For example, a new protein called Katushka has been isolated that is the brightest known proteinwith emission at wavelengths longer than ...

متن کامل

Development of real-time subcellular dynamic multicolor imaging of cancer-cell trafficking in live mice with a variable-magnification whole-mouse imaging system.

With the use of dual-color fluorescent cells and a highly sensitive whole-mouse imaging system with both macro-optics and micro-optics, we report here the development of subcellular real-time imaging of cancer cell trafficking in live mice. To observe cytoplasmic and nuclear dynamics in the living mouse, tumor cells were labeled in the nucleus with green fluorescent protein and with red fluores...

متن کامل

Comparative Studies of High Contrast Fluorescence Imaging Efficiency of Silica-coated CdSe Quantum Dots with Green and Red Emission

Herein we report the possibility of using green and red emitting silica-coated cadmium selenide (CdSe) quantum dots (QDs) for remarkable stem and cancer cellular imaging, efficient cellular uptake and fluorescence imaging of semi and ultra-thin sections of tumor for in vivo tumor targeted imaging applications. The comparative studies of high contrast cellular imaging behaviours of the silica-co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Anticancer research

دوره 32 1  شماره 

صفحات  -

تاریخ انتشار 2012