Improvements on the Individual Logarithm Computation for Finite Fields with Composite Extension Degrees
نویسندگان
چکیده
The hardness of discrete logarithm problem over finite fields is the foundation of many cryptographic protocols. The state-of-art algorithms for solving the corresponding problem are number field sieve, function field sieve and quasi-polynomial time algorithm when the characteristics of the finite field are medium to large, medium-small and small, respectively. There are mainly three steps in such algorithms: polynomial selection, factor base logarithms computation, and individual logarithm computation. Note that the former two steps can be precomputed for fixed finite field, and the database containing factor base logarithms can be used by the last step for many times. In certain application circumstances, such as Logjam attack, speeding up the individual logarithm step is vital. In this paper, we devise two methods to improve the individual logarithm step by exploring subfield structure when the extension degree n is composite. The first method applies to the case when the characteristic is medium to large. It is based on the extended tower number field sieve (exTNFS) and the improvement is significant when n has a large proper factor. The second one applies to any characteristic case. It is a generalization of the recent technique of Guillevic. It achieves almost optimal result and the improvement is significant when φ(n)/n is relatively small. We also perform some experiments to illustrate our algorithm and confirm the result.
منابع مشابه
Faster Individual Discrete Logarithms with the Qpa and Nfs Variants
Computing discrete logarithms in finite fields is a main concern in cryptography. The best algorithms known are the Number Field Sieve and its variants (special, high-degree, tower) in large and medium characteristic fields (e.g. GF(p2), GF(p12)); the Function Field Sieve and the Quasi Polynomialtime Algorithm in small characteristic finite fields (e.g. GF(36·509)). The last step of this family...
متن کاملImprovement of FPPR method to solve ECDLP
Solving the elliptic curve discrete logarithm problem (ECDLP) by using Gröbner basis has recently appeared as a new threat to the security of elliptic curve cryptography and pairing-based cryptosystems. At Eurocrypt 2012, Faugère, Perret, Petit and Renault proposed a new method (FPPR method) using a multivariable polynomial system to solve ECDLP over finite fields of characteristic 2. At Asiacr...
متن کاملImprovements on the Individual Logarithm Step in Extended Tower Number Field Sieve
The hardness of discrete logarithm problem over finite fields is the foundation of many cryptographic protocols. When the characteristic of the finite field is medium or large, the state-of-art algorithms for solving the corresponding problem are the number field sieve and its variants. There are mainly three steps in such algorithms: polynomial selection, factor base logarithms computation, an...
متن کاملImprovements on the Individual Logarithm Step in exTNFS
The hardness of discrete logarithm problem over finite fields is the foundation of many cryptographic protocols. When the characteristic of the finite field is medium or large, the state-of-art algorithms for solving the corresponding problem are the number field sieve and its variants. There are mainly three steps in such algorithms: polynomial selection, factor base logarithms computation, an...
متن کاملImprovement of Faugère et al.'s Method to Solve ECDLP
Solving the elliptic curve discrete logarithm problem (ECDLP) by using Gröbner basis has recently appeared as a new threat to the security of elliptic curve cryptography and pairing-based cryptosystems. At Eurocrypt 2012, Faugère, Perret, Petit and Renault proposed a new method using a multivariable polynomial system to solve ECDLP over finite fields of characteristic 2. At Asiacrypt 2012, Peti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016