Noncommutative Spectral Geometry of Riemannian Foliations: Some Results and Open Problems
نویسنده
چکیده
We review some applications of noncommutative geometry to the study of transverse geometry of Riemannian foliations and discuss open problems.
منابع مشابه
Identification of Riemannian foliations on the tangent bundle via SODE structure
The geometry of a system of second order differential equations is the geometry of a semispray, which is a globally defined vector field on TM. The metrizability of a given semispray is of special importance. In this paper, the metric associated with the semispray S is applied in order to study some types of foliations on the tangent bundle which are compatible with SODE structure. Indeed, suff...
متن کاملNoncommutative spectral geometry of Riemannian foliations
According to [9, 8], the initial datum of noncommutative differential geometry is a spectral triple (A,H, D) (see Section 3.1 for the definition), which provides a description of the corresponding geometrical space in terms of spectral data of geometrical operators on this space. The purpose of this paper is to construct spectral triples given by transversally elliptic operators with respect to...
متن کاملOn the k-nullity foliations in Finsler geometry
Here, a Finsler manifold $(M,F)$ is considered with corresponding curvature tensor, regarded as $2$-forms on the bundle of non-zero tangent vectors. Certain subspaces of the tangent spaces of $M$ determined by the curvature are introduced and called $k$-nullity foliations of the curvature operator. It is shown that if the dimension of foliation is constant, then the distribution is involutive...
متن کاملEgorov’s theorem for transversally elliptic operators on foliated manifolds and noncommutative geodesic flow
The main result of the paper is Egorov’s theorem for transversally elliptic operators on compact foliated manifolds. This theorem is applied to describe the noncommutative geodesic flow in noncommutative geometry of Riemannian foliations.
متن کاملComputer Algebra of Vector Bundles, Foliations and Zeta Functions and a Context of Noncommutative Geometry
We present some methods and results in the application of algebraic geometry and computer algebra to the study of algebraic vector bundles, foliations and zeta functions. A connection of the methods and results with noncommutative geometry will be consider.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997