Math 110: Linear Algebra Practice Midterm #2
نویسنده
چکیده
∗Note The theorems in sections 5.1 and 5.2 each have two versions, one stated in terms of linear operators, one in terms of matrices. The book states most of them in terms of linear operators, whilst in the lecture notes, they are mostly stated in terms of matrices. For example, compare Theorem 5.5 and its corollary in the book with Theorem 5 and its corollary in the lecture notes; also compare Theorem 5.6 in the book with the computation of the characteristic polynomial of a diagonalizable matrix done in lectures. In each case, one can derive one version from the other, by considering LA and [T ]β. In these solutions I’ll reference theorems in the book, but often I literally mean the matrix version of that theorem.
منابع مشابه
Some notes on sets , logic , and mathematical language
These are ‘‘generic’’ notes, for use in Math 110, 113, 104 or 185. (This printing is adapted for use in Math 110 with Friedberg, Insel and Spence’s Linear Algebra. Part 1 below has a large overlap with Appendices A and B of that text, but I have left it in for completeness, and because it gives further examples of the concepts in question.) These pages do not develop in detail the definitions a...
متن کاملMath 110: Linear Algebra Practice Final Solutions
Question 1. (1) Write f(x) = amx m + am−1xm−1 + · · ·+ a0. Then F = f(T ) = amT + am−1Tm−1 + · · ·+a0I. Since T is upper triangular, (T )ii = T k ii for all positive k and i ∈ {1, . . . , n}. Hence Fii = amT m ii + am−1T m−1 ii + · · ·+ a0 = f(Tii). (2) TF = Tf(T ) = T (amT m+am−1Tm−1+ · · ·+a0I) = amT+am−1T+ · · ·+a0T = (amT m + am−1Tm−1 + · · ·+ a0I)T = f(T )T = FT . (3) Since T is upper tria...
متن کاملImprovements in the computation of ideal class groups of imaginary quadratic number fields
We investigate improvements to the algorithm for the computation of ideal class groups described by Jacobson in the imaginary quadratic case. These improvements rely on the large prime strategy and a new method for performing the linear algebra phase. We achieve a significant speed-up and are able to compute ideal class groups with discriminants of 110 decimal digits in less than a week.
متن کاملMath 110: Linear Algebra
For a matrix A = [aij ] m,n i,j=1 ∈ Fm×n, the transpose of A is the matrix A> = [aji] n,m j,i=1 ∈ Fn×m. A square matrix A ∈ Rn×n is called symmetric if aji = aij for all i, j ∈ {1, . . . , n} and is called skew-symmetric or anti-symmetric if aji = −aij for all i, j ∈ {1, . . . , n}. A basis will be denoted B = {u1,u2, . . . ,un} when the ordering of the basis vectors is not important and B = [u...
متن کاملMath 113 Midterm Solutions
V = U ⊕ U ′, for some other subspace U ′ ⊂ V , by Theorem 3.21. Consider T restricted to U ′. This is a map T : U ′ →W , which is injective, since U ′∩ker(T ) = {0}. And note that injective maps, in general, preserve linear independence: if we have a linearly independent set {~x1, . . . , ~xn} ∈ X in a vector space X, a linear map of vector spaces A : X → Y , and a linear combination 0 = λ1A~x1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005