Machine Learning Applied to 3-D Reservoir Simulation
نویسنده
چکیده
The optimization of subsurface flow processes is important for many applications including oil field operations and the geological storage of carbon dioxide. These optimizations are very demanding computationally due to the large number of flow simulations that must be performed and the typically large dimension of the simulation models. In this work, reduced-order modeling (ROM) techniques are applied to reduce the simulation time of complex large-scale subsurface flow models. The procedures all entail proper orthogonal decomposition (POD), in which a high fidelity training simulation is run, solution snapshots are stored and an eigendecomposition is performed on the resulting data matrix. A clustering procedure to reduce the size of the eigen-decomposition problem and the resulting number of degrees of freedom is also implemented. Extensive flow simulations involving water injection into a geologically complex 3D oil reservoir model containing 60,000 grid blocks are presented.
منابع مشابه
Permeability Prediction of 3-D Binary Segmented Images using Neural Networks
3-D digital rock image have recently become an important piece of information about the hydrocarbon reservoir properties. The goal of this project is to explore and employ machine learning as a tool to better understand the 3-D digital rocks from geometric measurement and features extracted from the image. Introduction This project applies machine learning to 3-D binary segmented images of the ...
متن کاملOil Field Production using Machine Learning CS 229 Project Report
Effective management of reservoirs motivates oil and gas companies to do uncertainty analysis, optimize production and/or field development etc. Any such analysis requires a large number of flow simulations, of the order of hundreds in case of gradient-based methods or even thousands in case of direct search or stochastic procedures such as genetic algorithms. Since flow simulations are computa...
متن کاملPhotonic Reservoir Computing with Coupled Semiconductor Optical Amplifiers
We propose photonic reservoir computing as a new approach to optical signal processing and it can be used to handle for example large scale pattern recognition. Reservoir computing is a new learning method from the field of machine learning. This has already led to impressive results in software but integrated photonics with its large bandwidth and fast nonlinear effects would be a high-perform...
متن کاملMachine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملUse of Machine Learning in Petroleum Production Optimization under Geological Uncertainty
Geological uncertainty is of significant concern in petroleum reservoir modeling with the goal of maximizing oil production. Stochastic simulation allows generating multiple reservoir models that can be used to characterize this uncertainty. However, the large computation time needed for flow simulation (e.g., for use in production forecasting) impedes the evaluation of flow on all reservoir mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007