Hyaluronan stimulates pancreatic cancer cell motility

نویسندگان

  • Xiao-Bo Cheng
  • Shiro Kohi
  • Atsuhiro Koga
  • Keiji Hirata
  • Norihiro Sato
چکیده

Hyaluronan (HA) accumulates in pancreatic ductal adenocarcinoma (PDAC), but functional significance of HA in the aggressive phenotype remains unknown. We used different models to investigate the effect of HA on PDAC cell motility by wound healing and transwell migration assay. Changes in cell motility were examined in 8 PDAC cell lines in response to inhibition of HA production by treatment with 4-methylumbelliferone (4-MU) and to promotion by treatment with 12-O-tetradecanoyl-phorbol-13-acetate (TPA) or by co-culture with tumor-derived stromal fibroblasts. We also investigated changes in cell motility by adding exogenous HA. Additionally, mRNA expressions of hyaluronan synthases and hyaluronidases were examined using real time RT-PCR. Inhibition of HA by 4-MU significantly decreased the migration, whereas promotion of HA by TPA or co-culture with tumor-derived fibroblasts significantly increased the migration of PDAC cells. The changes in HA production by these treatments tended to be associated with changes in HAS3 mRNA expression. Furthermore, addition of exogenous HA, especially low-molecular-weight HA, significantly increased the migration of PDAC cells. These findings suggest that HA stimulates PDAC cell migration and thus represents an ideal therapeutic target to prevent invasion and metastasis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanism of MTA1 protein overexpression-linked invasion. MTA1 regulation of hyaluronan-mediated motility receptor (HMMR) expression and function.

Even though the hyaluronan-mediated motility receptor (HMMR), a cell surface oncogenic protein, is widely up-regulated in human cancers and correlates well with cell motility and invasion, the underlying molecular and nature of its putative upstream regulation remain unknown. Here, we found for the first time that MTA1 (metastatic tumor antigen 1), a master chromatin modifier, regulates the exp...

متن کامل

Accumulation of Extracellular Hyaluronan by Hyaluronan Synthase 3 Promotes Tumor Growth and Modulates the Pancreatic Cancer Microenvironment

Extensive accumulation of the glycosaminoglycan hyaluronan is found in pancreatic cancer. The role of hyaluronan synthases 2 and 3 (HAS2, 3) was investigated in pancreatic cancer growth and the tumor microenvironment. Overexpression of HAS3 increased hyaluronan synthesis in BxPC-3 pancreatic cancer cells. In vivo, overexpression of HAS3 led to faster growing xenograft tumors with abundant extra...

متن کامل

The Development of a Novel Therapeutic Strategy to Target Hyaluronan in the Extracellular Matrix of Pancreatic Ductal Adenocarcinoma

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal diseases to affect humans, regardless of whether patients receive multimodal therapy (including surgery, radiotherapy, and chemotherapy). This resistance to intervention is currently considered to be caused by the desmoplastic change of the extracellular matrix (ECM) in PDAC tissues, which is characterized by the accumulation of ...

متن کامل

Chondroitin sulfate E fragments enhance CD44 cleavage and CD44-dependent motility in tumor cells.

During tumor cell invasion, certain extracellular matrix (ECM) components such as hyaluronan (HA) are degraded into small oligosaccharides, which are detected in patients. We previously reported that such HA oligosaccharides induce the proteolytic cleavage of an ECM-binding molecule CD44 from tumor cells and promote tumor cell migration in a CD44-dependent manner. Here, we report that chondroit...

متن کامل

Membrane-Type 1 Matrix Metalloproteinase Cleaves Cd44 and Promotes Cell Migration

Migratory cells including invasive tumor cells frequently express CD44, a major receptor for hyaluronan and membrane-type 1 matrix metalloproteinase (MT1-MMP) that degrades extracellular matrix at the pericellular region. In this study, we demonstrate that MT1-MMP acts as a processing enzyme for CD44H, releasing it into the medium as a soluble 70-kD fragment. Furthermore, this processing event ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016