Dynamics of nascent and active zone ultrastructure as synapses enlarge during long-term potentiation in mature hippocampus.

نویسندگان

  • Maria Elizabeth Bell
  • Jennifer N Bourne
  • Michael A Chirillo
  • John M Mendenhall
  • Masaaki Kuwajima
  • Kristen M Harris
چکیده

Nascent zones and active zones are adjacent synaptic regions that share a postsynaptic density, but nascent zones lack the presynaptic vesicles found at active zones. Here dendritic spine synapses were reconstructed through serial section electron microscopy (3DEM) and EM tomography to investigate nascent zone dynamics during long-term potentiation (LTP) in mature rat hippocampus. LTP was induced with theta-burst stimulation, and comparisons were made with control stimulation in the same hippocampal slices at 5 minutes, 30 minutes, and 2 hours post-induction and to perfusion-fixed hippocampus in vivo. Nascent zones were present at the edges of ∼35% of synapses in perfusion-fixed hippocampus and as many as ∼50% of synapses in some hippocampal slice conditions. By 5 minutes, small dense-core vesicles known to transport active zone proteins moved into more presynaptic boutons. By 30 minutes, nascent zone area decreased, without significant change in synapse area, suggesting that presynaptic vesicles were recruited to preexisting nascent zones. By 2 hours, both nascent and active zones were enlarged. Immunogold labeling revealed glutamate receptors in nascent zones; however, average distances from nascent zones to docked presynaptic vesicles ranged from 170 ± 5 nm in perfusion-fixed hippocampus to 251 ± 4 nm at enlarged synapses by 2 hours during LTP. Prior stochastic modeling suggests that decrease in glutamate concentration reduces the probability of glutamate receptor activation from 0.4 at the center of release to 0.1 just 200 nm away. Thus, conversion of nascent zones to functional active zones likely requires the recruitment of presynaptic vesicles during LTP.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effects of CCK-8S on spatial memory and long-term potentiation at CA1 during induction of stress in rats

Objective(s): Cholecystokinin (CCK) has been proposed as a mediator in stress. However, it is still not fully documented what are its effects. We aimed to evaluate the effects of systemic administration of CCK exactly before induction of stress on spatial memory and synaptic plasticity at CA1 in rats. Materials and Methods: Male Wistar rats were divided into 4 groups: the control, the control-C...

متن کامل

Spatial Learning and Memory in Barnes Maze Test and Synaptic Potentiation in ‎Schaffer Collateral-CA1 Synapses of Dorsal Hippocampus in Freely Moving Rats

Introduction: Synaptic plasticity has been suggested as the primary physiological mechanism underlying memory formation. Many experimental approaches have been used to investigate whether the mechanisms underlying long-term potentiation (LTP) are activated during learning. Nevertheless, little evidence states that hippocampal-dependent learning triggers synaptic plasticity. In this study, we in...

متن کامل

P6: Metabotropic Glutamate Receptor-Dependent Role in the Formation of Long-Term Potentiation

Long-term potentiation (LTP) is a reflection of synaptic plasticity that induced by specific patterns of synaptic activity and has an important role in learning and memory. The first clue of the potential role of glutamate receptors in LTP was in 1991 with the observation that the mGluR agonists 1-amino-1, 3-cyclopentanedicarboxylic acid (ACPD), increased LTP. Studies have shown that ACPD induc...

متن کامل

Acute application of cholecystokinin and its effect on long-term potentiation induction at CA1 area of hippocampal formation in rat

Introduction: It has been demonstrated that cholecystokinin sulfated octapeptide (CCK-8s) can affect synaptic transmission in the hippocampus. Because one of the major experimental models to understand the events happening in synaptic plasticity is To Study the long-term potentiation (LTP), we decided to investigate the effect of concomitant administration of CCK-8s and tetanic stimulation of S...

متن کامل

Warmer preparation of hippocampal slices prevents synapse proliferation that might obscure LTP-related structural plasticity.

The hippocampal slice is a popular model system in which to study the cellular properties of long-term potentiation (LTP). Synaptogenesis induced by exposure to ice-cold artificial cerebrospinal fluid (ACSF), however, raises the concern that morphological correlates of LTP might be obscured, especially in mature slices. Here we demonstrate that preparation of mature hippocampal slices at room t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of comparative neurology

دوره 522 17  شماره 

صفحات  -

تاریخ انتشار 2014