The cyclin-dependent kinase inhibitor Roughex is involved in mitotic exit in Drosophila
نویسندگان
چکیده
BACKGROUND Exit from mitosis is a tightly regulated event. This process has been studied in greatest detail in budding yeast, where several activities have been identified that cooperate to downregulate activity of the cyclin-dependent kinase (CDK) Cdc28 and force an exit from mitosis. Cdc28 is inactivated through proteolysis of B-type cyclins by the multisubunit ubiquitin ligase termed the anaphase promoting complex/cyclosome (APC/C) and inhibition by the cyclin-dependent kinase inhibitor (CKI) Sic1. In contrast, the only mechanism known to be essential for CDK inactivation during mitosis in higher eukaryotes is cyclin destruction. RESULTS We now present evidence that the Drosophila CKI Roughex (Rux) contributes to exit from mitosis. Observations of fixed and living embryos show that metaphase is significantly longer in rux mutants than in wild-type embryos. In addition, Rux overexpression is sufficient to drive cells experimentally arrested in metaphase into interphase. Furthermore, rux mutant embryos are impaired in their ability to overcome a transient metaphase arrest induced by expression of a stable cyclin A. Rux has numerous functional similarities with Sic1. While these proteins share no sequence similarity, we show that Sic1 inhibits mitotic Cdk1-cyclin complexes from Drosophila in vitro and in vivo. CONCLUSIONS Rux inhibits Cdk1-cyclin A kinase activity during metaphase, thereby contributing to exit from mitosis. To our knowledge, this is the first mitotic function ascribed to a CKI in a multicellular organism and indicates the existence of a novel regulatory mechanism for the metaphase to anaphase transition during development.
منابع مشابه
Mitosis in Neurons: Roughex and APC/C Maintain Cell Cycle Exit to Prevent Cytokinetic and Axonal Defects in Drosophila Photoreceptor Neurons
The mechanisms of cell cycle exit by neurons remain poorly understood. Through genetic and developmental analysis of Drosophila eye development, we found that the cyclin-dependent kinase-inhibitor Roughex maintains G1 cell cycle exit during differentiation of the R8 class of photoreceptor neurons. The roughex mutant neurons re-enter the mitotic cell cycle and progress without executing cytokine...
متن کاملRux is a cyclin-dependent kinase inhibitor (CKI) specific for mitotic cyclin–Cdk complexes
BACKGROUND Roughex (Rux) is a cell-cycle regulator that contributes to the establishment and maintenance of the G1 state in the fruit fly Drosophila. Genetic data show that Rux inhibits the S-phase function of the cyclin A (CycA)-cyclin-dependent kinase 1 (Cdk1) complex; in addition, it can prevent the mitotic functions of CycA and CycB when overexpressed. Rux has no homology to known Cdk inhib...
متن کاملDacapo, a Cyclin-Dependent Kinase Inhibitor, Stops Cell Proliferation during Drosophila Development
Most cell types in multicellular eukaryotes exit from the mitotic cell cycle before terminal differentiation. We show that the dacapo gene is required to arrest the epidermal cell proliferation at the correct developmental stage during Drosophila embryogenesis. dacapo encodes an inhibitor of cyclin E/cdk2 complexes with similarity to the vertebrate Cip/Kip inhibitors. dacapo is transiently expr...
متن کاملRegulation of cyclin-dependent kinase activity during mitotic exit and maintenance of genome stability by p21, p27, and p107.
To study the regulation of cyclin-dependent kinase (CDK) activity during mitotic exit in mammalian cells, we constructed murine cell lines that constitutively express a stabilized mutant of cyclin A (cyclin A47). Even though cyclin A47 was expressed throughout mitosis and in G1 cells, its associated CDK activity was inactivated after the transition from metaphase to anaphase. Cyclin A47 associa...
متن کاملInhibition of Cyclin-dependent Kinase (CDK) Decreased Survival of NB4 Leukemic Cells: Proposing a p53-Independent Sensitivity of Leukemic Cells to Multi-CDKs Inhibitor AT7519
An unbounded number of events exist beneath the intricacy of each particular hematologic malignancy, prompting the tumor cells into an unrestrained proliferation and invasion. Aberrant expression of cyclin-dependent kinases (CDKs) is one of these events which disrupts regulation of cell cycle and subsequently, results in cancer progression. In this study, we surveyed the repressive impact of mu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 11 شماره
صفحات -
تاریخ انتشار 2001