Polynomial interpolation in several variables: lattices, differences, and ideals

نویسنده

  • Tomas Sauer
چکیده

When passing from one to several variables, the nature and structure of polynomial interpolation changes completely: the solvability of the interpolation problem with respect to a given finite dimensional polynomial space, like all polynomials of at most a certain total degree, depends not only on the number, but significantly on the geometry of the nodes. Thus the construction of interpolation sites suitable for a given space of polynomials or of appropriate interpolation spaces for a given set of nodes become challenging and nontrivial problems. The paper will review some of the basic constructions of interpolation lattices which emerge from the geometric characterization due to Chung and Yao. Depending on the structure of the interpolation problem, there are different representations of the interpolation polynomial and several formulas for the error of interpolation, reflecting the underlying point geometry and employing different types of differences, divided and non–divided ones. In addition, we point out the close relationship with constructive ideal theory and degree reducing interpolation, whose most prominent representer is the least interpolant, introduced by de Boor et al.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ideal bases for graded polynomial rings and applications to interpolation

Based on a generalized algorithm for the division with remainder of polynomials in several variables, a method for the construction of standard bases for polynomial ideals with respect to arbitrary grading structures is derived. In the case of ideals with finite codimension, which can be viewed upon as a polynomial interpolation problem, an explicit representation for the interpolation space of...

متن کامل

Algebraic Aspects of Polynomial Interpolation in Several Variables

This paper summarizes relations between the constructive theory of polynomial ideals and polynomial interpolation in several variables. The main ingredient is a generalization of the algorithm for division with remainder to \quotients" of polynomials and nite sets of polynomi-als. x1. Introduction When compared to the univariate case, polynomial interpolation in several variables turns out to b...

متن کامل

Aitken-Neville sets, principal lattices and divided differences

In this paper we study multivariate polynomial interpolation on Aitken–Neville sets by relating them to generalized principal lattices. We express their associated divided differences in terms of spline integrals.

متن کامل

Ideal of Lattice homomorphisms corresponding to the products of two arbitrary lattices and the lattice [2]

Abstract. Let L and M be two finite lattices. The ideal J(L,M) is a monomial ideal in a specific polynomial ring and whose minimal monomial generators correspond to lattice homomorphisms ϕ: L→M. This ideal is called the ideal of lattice homomorphism. In this paper, we study J(L,M) in the case that L is the product of two lattices L_1 and L_2 and M is the chain [2]. We first characterize the set...

متن کامل

Remarks on special ideals in lattices

The author studies some characteristic properties of semiprime ideals. The semiprimeness is also used to characterize distributive and modular lattices. Prime ideals are described as the meet-irreducible semiprime ideals. In relatively complemented lattices they are characterized as the maximal semiprime ideals. D-radicals of ideals are introduced and investigated. In particular, the prime radi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004