Proximity and Contact Sensing with Instrumented Compliant Wrist for Close Guidance of Robotic Manipulators

نویسندگان

  • Pascal Laferrière
  • Pierre Payeur
چکیده

Compliance in robotic systems has been exploited to allow rigid mechanisms to come into contact with complex and possibly fragile objects. By incorporating compliance and instrumentation into a single device nearby objects can be detected before direct contact occurs. That way, safer and smoother robot guidance can be achieved both while approaching and while touching surfaces. Furthermore, the path planning and control problem is simplified as position based algorithms can be used regardless of the state of the system, be it in free motion or constrained motion, or even during transitions between the two modes. This paper presents the design and experimental validation of a lightweight, low-cost and stand-alone instrumented compliant wrist mechanism which can be mounted on the tool plate of any rigid robotic manipulator. Embedded arrays of infrared sensors provide distance measurements. Each is finely tuned via a novel calibration procedure that overcomes inter-sensor variability. All signal processing is also embedded and wireless transmission connects the device to the robot controller to support path control. Real-time acquired measurements on the position and orientation of surfaces located in close proximity or in contact with the robot’s end effector permit close guidance of its operation. Experimental work demonstrates how the device provides physical compliance to prevent large impact forces to occur during non-contact to contact transitions by the manipulator’s end effector. It also demonstrates the stability and accuracy of the device outputs. Primary applications of the proposed instrumented compliant wrist include smooth surface following in manufacturing and safe human-robot interaction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Instrumented Compliant Wrist with Proximity and Contact Sensing for Close Robot Interaction Control

Compliance has been exploited in various forms in robotic systems to allow rigid mechanisms to come into contact with fragile objects, or with complex shapes that cannot be accurately modeled. Force feedback control has been the classical approach for providing compliance in robotic systems. However, by integrating other forms of instrumentation with compliance into a single device, it is possi...

متن کامل

Robotic Exploration of Surfaces With a Compliant Wrist Sensor

This paper presents some results of an ongoing research project to investigate the components and modules that are necessary to equip a robot with exploratory capabilities. Of particular interest is the recovery of certain material properties from a surface, given minimal a priori information, with the intent to use this information to enable a robot to stand and walk stably on a surface that i...

متن کامل

Simplifying Tool Usage In Teleoperative Tasks

Modern robotic research has presented the opportunity for enhanced teleoperative systems. Teleprogramming has been developed for teleoperation in time-delayed environments, but can also lead to increased productivity in non-delayed teleoperation. Powered tools are used to increase the abilities of the remote manipulator. However, tools add to the complexity of the system, both in terms of contr...

متن کامل

Discrete-time repetitive optimal control: Robotic manipulators

This paper proposes a discrete-time repetitive optimal control of electrically driven robotic manipulators using an uncertainty estimator. The proposed control method can be used for performing repetitive motion, which covers many industrial applications of robotic manipulators. This kind of control law is in the class of torque-based control in which the joint torques are generated by permanen...

متن کامل

Force-Sensing Actuator with a Compliant Flexure-Type Joint for a Robotic Manipulator

This paper deals with the mechatronic design of a novel self-sensing motor-to-joint transmission to be used for the actuation of robotic dexterous manipulators. Backdrivability, mechanical simplicity and efficient flexure joint structures are key concepts that have guided the mechanical design rationale to provide the actuator with force sensing capabilities. Indeed, a self-sensing characterist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017