Size-dependent cytotoxicity of gold nanoparticles.
نویسندگان
چکیده
Gold nanoparticles are widely used in biomedical imaging and diagnostic tests. Based on their established use in the laboratory and the chemical stability of Au(0), gold nanoparticles were expected to be safe. The recent literature, however, contains conflicting data regarding the cytotoxicity of gold nanoparticles. Against this background a systematic study of water-soluble gold nanoparticles stabilized by triphenylphosphine derivatives ranging in size from 0.8 to 15 nm is made. The cytotoxicity of these particles in four cell lines representing major functional cell types with barrier and phagocyte function are tested. Connective tissue fibroblasts, epithelial cells, macrophages, and melanoma cells prove most sensitive to gold particles 1.4 nm in size, which results in IC(50) values ranging from 30 to 56 microM depending on the particular 1.4-nm Au compound-cell line combination. In contrast, gold particles 15 nm in size and Tauredon (gold thiomalate) are nontoxic at up to 60-fold and 100-fold higher concentrations, respectively. The cellular response is size dependent, in that 1.4-nm particles cause predominantly rapid cell death by necrosis within 12 h while closely related particles 1.2 nm in diameter effect predominantly programmed cell death by apoptosis.
منابع مشابه
Curcumin coated gold nanoparticles: synthesis, characterization, cytotoxicity, antioxidant activity and its comparison with citrate coated gold nanoparticles
Objective(s): Biological applications of gold nanoparticles have limitations because of the toxic chemicals used in their synthesis. Curcumin can be used as reducing as well as capping agent in synthesis of GNPs to eliminate the cytotoxicity. Conjugation of curcumin to gold also helps in increasing its solubility and bioavailability. Materials and Methods: Here we report synthesis of gold nanop...
متن کاملIrradiation stability and cytotoxicity of gold nanoparticles for radiotherapy
Gold nanoparticles are promising as a kind of novel radiosensitizer in radiotherapy. If gold nanoparticles are shown to have good irradiation stability and biocompatibility, they would play an important role in radiotherapy. In this work, we investigated irradiation effects of gold nanoparticles under 2-10 kR gamma irradiation and cytotoxicity of gold nanoparticles with human K562 cells by usin...
متن کاملSynthesis and Cytotoxicity Assessment of Gold-coated Magnetic Iron Oxide Nanoparticles
Introduction: One class of magnetic nanoparticles is magnetic iron oxide nanoparticles (MIONs) which has been widely offered due to of their many advantages. Owing to the extensive application of MIONs in biomedicine, before they can be used in vivo, their cytotoxicity have to be investigated. Therefore, there is an urgent need for understanding the potential risks associated with MIONs.Materia...
متن کاملEntrapped chemically synthesized gold nanoparticles combined with polyethylene glycol and chloroquine diphosphate as an improved antimalarial drug
Objective(s): Drug delivery is an engineering technology to control the release and delivery of therapeutic agents to target organs, tissues, and cells. Metallic nanoparticles, such as gold nanoparticles (AuNPs) have exceptional properties which enable efficient drug transport into different cell types with reduced side effects and cytotoxicity to other tissues.Materials and Methods: AuNPs were...
متن کاملGold nanoparticles as a radio-sensitizer of colon cancer cells at high megavoltage energies: An In-Vitro study
Introduction: In the point of physical view, there are no significant differences between tumor and normal tissues during radiation therapy. Radio-sensitizers have a key role to address the issue. Exploiting high atomic number, gold nanoparticles (GNPs) have been introduced as novel radio-sensitizers and have shown promising result in the field. Owing to high mass attenuation c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Small
دوره 3 11 شماره
صفحات -
تاریخ انتشار 2007