Modulation of artificial whisking related signals in barrel cortex.
نویسندگان
چکیده
Rats use rhythmic whisker movements, called active whisking, to sense the environment, which include whisker protractions followed by retractions at various frequencies. Using a proxy of active whisking in anesthetized rats, called artificial whisking, which is induced by electrically stimulating the facial motor nerve, we characterized the neural responses evoked in the barrel cortex by whisking in air (without contact) and on a surface (with contact). Neural responses were compared between distinct network states consisting of cortical deactivation (synchronized slow oscillations) and activation (desynchronized state) produced by neuromodulation (cholinergic or noradrenergic stimulation in neocortex or thalamus). Here we show that population responses in the barrel cortex consist of a robust signal driven by the onset of the whisker protraction followed by a whisking retraction signal that emerges during low frequency whisking on a surface. The whisking movement onset signal is suppressed by increasing whisking frequency, is controlled by cortical synaptic inhibition, is suppressed during cortical activation states, is little affected by whisking on a surface, and is ubiquitous in ventroposterior medial (VPM) thalamus, barrel cortex, and superior colliculus. The whisking retraction signal codes the duration of the preceding whisker protraction, is present in thalamocortical networks but not in superior colliculus, and is robust during cortical activation; a state associated with natural exploratory whisking. The expression of different whisking signals in forebrain and midbrain may define the sensory processing abilities of those sensorimotor circuits. Whisking related signals in the barrel cortex are controlled by network states that are set by neuromodulators.
منابع مشابه
CALL FOR PAPERS Neurophysiology of Tactile Perception: a Tribute to Steven Hsiao Modulation of artificial whisking related signals in barrel cortex
Castro-Alamancos MA, Bezdudnaya T. Modulation of artificial whisking related signals in barrel cortex. J Neurophysiol 113: 1287–1301, 2015. First published December 10, 2014; doi:10.1152/jn.00809.2014.—Rats use rhythmic whisker movements, called active whisking, to sense the environment, which include whisker protractions followed by retractions at various frequencies. Using a proxy of active w...
متن کاملManuel A . Castro - Alamancos and Tatiana Bezdudnaya barrel cortex Modulation of artificial whisking related signals in
متن کامل
Cholinergic signals in mouse barrel cortex during active whisker sensing.
Internal brain states affect sensory perception, cognition, and learning. Many neocortical areas exhibit changes in the pattern and synchrony of neuronal activity during quiet versus active behaviors. Active behaviors are typically associated with desynchronized cortical dynamics. Increased thalamic firing contributes importantly to desynchronize mouse barrel cortex during active whisker sensin...
متن کاملInformation processing streams in rodent barrel cortex: the differential functions of barrel and septal circuits.
Rodent somatosensory cortex contains an isomorphic map of the mystacial whiskers in which each whisker is represented by neuronal populations, or barrels, that are separated from each other by intervening septa. Separate afferent pathways convey somatosensory information to the barrels and septa that represent the input stages for 2 partially segregated circuits that extend throughout the other...
متن کاملCortical barrel field ablation and unconditioned whisking kinematics.
The effects of "barrel cortex" ablation upon the biometrics of "exploratory" whisking were examined in three head-fixed rats which had previously sustained unilateral ablation of the left cortical "barrel field" under electrophysiological control. Unconditioned movements of a pair of bilaterally homologous whiskers (C-1, Right, Left) were monitored, optoelectronically, with other whiskers prese...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 113 5 شماره
صفحات -
تاریخ انتشار 2015