The Feature Selection and Intrusion Detection Problems

نویسندگان

  • Andrew H. Sung
  • Srinivas Mukkamala
چکیده

Cyber security is a serious global concern. The potential of cyber terrorism has posed a threat to national security; meanwhile the increasing prevalence of malware and incidents of cyber attacks hinder the utilization of the Internet to its greatest benefit and incur significant economic losses to individuals, enterprises, and public organizations. This paper presents some recent advances in intrusion detection, feature selection, and malware detection. In intrusion detection, stealthy and low profile attacks that include only few carefully crafted packets over an extended period of time to delude firewalls and the intrusion detection system (IDS) have been difficult to detect. In protection against malware (trojans, worms, viruses, etc.), how to detect polymorphic and metamorphic versions of recognized malware using static scanners is a great challenge. We present in this paper an agent based IDS architecture that is capable of detecting probe attacks at the originating host and denial of service (DoS) attacks at the boundary controllers. We investigate and compare the performance of different classifiers implemented for intrusion detection purposes. Further, we study the performance of the classifiers in real-time detection of probes and DoS attacks, with respect to intrusion data collected on a real operating network that includes a variety of simulated attacks. Feature selection is as important for IDS as it is for many other modeling problems. We present several techniques for feature selection and compare their performance in the IDS application. It is demonstrated that, with appropriately chosen features, both probes and DoS attacks can be detected in real time or near real time at the originating host or at the boundary controllers. We also briefly present some encouraging recent results in detecting polymorphic and metamorphic malware with advanced static, signature-based scanning techniques.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems

Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...

متن کامل

A Parallel Genetic Algorithm Based Method for Feature Subset Selection in Intrusion Detection Systems

Intrusion detection systems are designed to provide security in computer networks, so that if the attacker crosses other security devices, they can detect and prevent the attack process. One of the most essential challenges in designing these systems is the so called curse of dimensionality. Therefore, in order to obtain satisfactory performance in these systems we have to take advantage of app...

متن کامل

Anomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors

Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing un...

متن کامل

Intrusion Detection based on a Novel Hybrid Learning Approach

Information security and Intrusion Detection System (IDS) plays a critical role in the Internet. IDS is an essential tool for detecting different kinds of attacks in a network and maintaining data integrity, confidentiality and system availability against possible threats. In this paper, a hybrid approach towards achieving high performance is proposed. In fact, the important goal of this paper ...

متن کامل

A Novel Intrusion Detection Systems based on Genetic Algorithms-suggested Features by the Means of Different Permutations of Labels’ Orders

Intrusion detection systems (IDS) by exploiting Machine learning techniques are able to diagnose attack traffics behaviors. Because of relatively large numbers of features in IDS standard benchmark dataset, like KDD CUP 99 and NSL_KDD, features selection methods play an important role. Optimization algorithms like Genetic algorithms (GA) are capable of finding near-optimum combination of the fe...

متن کامل

Network Intrusion Detection Design Using Feature Selection of Soft Computing Paradigms

The network traffic data provided for the design of intrusion detection always are large with ineffective information and enclose limited and ambiguous information about users’ activities. We study the problems and propose a two phases approach in our intrusion detection design. In the first phase, we develop a correlation-based feature selection algorithm to remove the worthless information fr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004