A complete span of H(4, 4) admitting PSL2(11) and related structures
نویسندگان
چکیده
We construct a complete 11–span of H(4, 4) admitting the group PSL2(11). This span turns out to be associated with the unique Hadamard design H11 and the so-called Petersen design.
منابع مشابه
A Complete Bibliography of the LMS Journal of Computation and Mathematics
#P [20]. (2× 2 ·G): 2 [160]. 1 [174]. 12 [190]. 13A [321]. 2 [154, 269, 216, 117, 317, 146, 172, 6, 51]. 3 [216, 166]. 30 [11]. 4 [124]. 47: 23 [341]. 5 [332]. 6 [276, 142]. 6560 [54]. 7 [354]. 8 [267]. F4(q) [143, 161]. a − 2 = c [211]. a − 2b = c [211]. An [85]. B [73]. C [264]. C3,4 [122]. d [198]. E6 [123]. E7(2) [306]. E8 [123, 147]. ` [295]. F16 [126]. Fi24 [132]. GF(2) [104]. GF(p) [369]...
متن کاملSome results on Bipolar Fuzzy Graph
In this paper, the notion ofgraph operationsdisjunction and symmetric difference on bipolar fuzzy graphs are defined and it is proved that the new graph is a bipolar graph. Furthermore,the new concepts of bipolar fuzzy graphs calledupperstrong and lower strongbipolar fuzzy graphare introduced and some related </...
متن کاملAll binary linear codes that are invariant under PSL2(n)
The projective special linear group PSL2(n) is 2-transitive for all primes n and 3-homogeneous for n≡ 3 (mod 4) on the set {0,1, · · · ,n−1,∞}. It is known that the extended odd-like quadratic residue codes are invariant under PSL2(n). Hence, the extended quadratic residue codes hold an infinite family of 2-designs for primes n≡ 1 (mod 4), an infinite family of 3-designs for primes n≡ 3 (mod 4)...
متن کاملFinite groups admitting a connected cubic integral bi-Cayley graph
A graph is called integral if all eigenvalues of its adjacency matrix are integers. Given a subset $S$ of a finite group $G$, the bi-Cayley graph $BCay(G,S)$ is a graph with vertex set $Gtimes{1,2}$ and edge set ${{(x,1),(sx,2)}mid sin S, xin G}$. In this paper, we classify all finite groups admitting a connected cubic integral bi-Cayley graph.
متن کاملADMITTING CENTER MAPS ON MULTIPLICATIVE METRIC SPACE
In this work, we investigate admitting center map on multiplicative metric space and establish some fixed point theorems for such maps. We modify the Banach contraction principle and the Caristi's fixed point theorem for M-contraction admitting center maps and we prove some useful theorems. Our results on multiplicative metric space improve and modify s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Contributions to Discrete Mathematics
دوره 3 شماره
صفحات -
تاریخ انتشار 2008