High Five: Improving Gesture Recognition by Embracing Uncertainty
نویسندگان
چکیده
Sensors on mobile devices—accelerometers, gyroscopes, pressure meters, and GPS—invite new applications in gesture recognition, gaming, and fitness tracking. However, programming them remains challenging because human gestures captured by sensors are noisy. This paper illustrates that noisy gestures degrade training and classification accuracy for gesture recognition in state-of-the-art deterministic Hidden Markov Models (HMM). We introduce a new statistical quantization approach that mitigates these problems by (1) during training, producing gesture-specific codebooks, HMMs, and error models for gesture sequences; and (2) during classification, exploiting the error model to explore multiple feasible HMM state sequences. We implement classification in Uncertain〈T 〉, a probabilistic programming system that encapsulates HMMs and error models and then automates sampling and inference in the runtime. Uncertain〈T 〉 developers directly express a choice of applicationspecific trade-off between recall and precision at gesture recognition time, rather than at training time. We demonstrate benefits in configurability, precision, recall, and recognition on two data sets with 25 gestures from 28 people and 4200 total gestures. Incorporating gesture error more accurately in modeling improves the average recognition rate of 20 gestures from 34% in prior work to 62%. Incorporating the error model during classification further improves the average gesture recognition rate to 71%. As far as we are aware, no prior work shows how to generate an HMM error model during training and use it to improve classification rates.
منابع مشابه
Hand Gesture Recognition from RGB-D Data using 2D and 3D Convolutional Neural Networks: a comparative study
Despite considerable enhances in recognizing hand gestures from still images, there are still many challenges in the classification of hand gestures in videos. The latter comes with more challenges, including higher computational complexity and arduous task of representing temporal features. Hand movement dynamics, represented by temporal features, have to be extracted by analyzing the total fr...
متن کاملCombined Hand Gesture — Speech Model for Human Action Recognition
This study proposes a dynamic hand gesture detection technology to effectively detect dynamic hand gesture areas, and a hand gesture recognition technology to improve the dynamic hand gesture recognition rate. Meanwhile, the corresponding relationship between state sequences in hand gesture and speech models is considered by integrating speech recognition technology with a multimodal model, thu...
متن کاملToward Natural Gesture/Speech HCI: A Case Study of Weather Narration
In order to incorporate naturalness in the design of Human Computer Interfaces (HCI), it is desirable to develop recognition techniques capable of handling continuous natural gesture and speech inputs. Hidden Markov Models (HMMs) provide a good framework for continuous gesture recognition and also for multimodal fusion [11]. Many different researchers [13, 12, 2], have reported high recognition...
متن کاملQuantative Evaluation of the Efficiency of Facial Bio-potential Signals Based on Forehead Three-Channel Electrode Placement For Facial Gesture Recognition Applicable in a Human-Machine Interface
Introduction: Today, facial bio-potential signals are employed in many human-machine interface applications for enhancing and empowering the rehabilitation process. The main point to achieve that goal is to record appropriate bioelectric signals from the human face by placing and configuring electrodes over it in the right way. In this paper, heuristic geometrical position and configuration of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1710.09441 شماره
صفحات -
تاریخ انتشار 2017