Analytical computation of frequency distributions of path-dependent processes by means of a non-multinomial maximum entropy approach
نویسندگان
چکیده
Path-dependent stochastic processes are often non-ergodic and observables can no longer be computed within the ensemble picture. The resulting mathematical difficulties pose severe limits to the analytical understanding of path-dependent processes. Their statistics is typically non-multinomial in the sense that the multiplicities of the occurrence of states is not a multinomial factor. The maximum entropy principle is tightly related to multinomial processes, non-interacting systems, and to the ensemble picture; It loses its meaning for path-dependent processes. Here we show that an equivalent to the ensemble picture exists for path-dependent processes, such that the non-multinomial statistics of the underlying dynamical process, by construction, is captured correctly in a functional that plays the role of an entropy. We demonstrate this for self-reinforcing Pólya urn processes that explicitly break multinomial structure. We demonstrate the new method by computing frequency and rank distributions of Polya urn processes. For the first time we are able to use detailed microscopic update rules of a path-dependent process to construct a non-multinomial entropy functional, that, when maximized, predicts the time-dependent distribution function.
منابع مشابه
The Maximum Entropy Relaxation Path
The relaxed maximum entropy problem is concerned with finding a probability distribution on a finite set that minimizes the relative entropy to a given prior distribution, while satisfying relaxed max-norm constraints with respect to a third observed multinomial distribution. We study the entire relaxation path for this problem in detail. We show existence and a geometric description of the rel...
متن کاملA risk model for cloud processes
Traditionally, risk assessment consists of evaluating the probability of "feared events", corresponding to known threats and attacks, as well as these events' severity, corresponding to their impact on one or more stakeholders. Assessing risks of cloud-based processes is particularly difficult due to lack of historical data on attacks, which has prevented frequency-based identification...
متن کاملThe Analysis of Bayesian Probit Regression of Binary and Polychotomous Response Data
The goal of this study is to introduce a statistical method regarding the analysis of specific latent data for regression analysis of the discrete data and to build a relation between a probit regression model (related to the discrete response) and normal linear regression model (related to the latent data of continuous response). This method provides precise inferences on binary and multinomia...
متن کاملA Note on the Bivariate Maximum Entropy Modeling
Let X=(X1 ,X2 ) be a continuous random vector. Under the assumption that the marginal distributions of X1 and X2 are given, we develop models for vector X when there is partial information about the dependence structure between X1 and X2. The models which are obtained based on well-known Principle of Maximum Entropy are called the maximum entropy (ME) mo...
متن کاملDetermination of Maximum Bayesian Entropy Probability Distribution
In this paper, we consider the determination methods of maximum entropy multivariate distributions with given prior under the constraints, that the marginal distributions or the marginals and covariance matrix are prescribed. Next, some numerical solutions are considered for the cases of unavailable closed form of solutions. Finally, these methods are illustrated via some numerical examples.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1511.00414 شماره
صفحات -
تاریخ انتشار 2015