The lipid-linked oligosaccharide donor specificities of Trypanosoma brucei oligosaccharyltransferases

نویسندگان

  • Luis Izquierdo
  • Angela Mehlert
  • Michael AJ Ferguson
چکیده

We recently presented a model for site-specific protein N-glycosylation in Trypanosoma brucei whereby the TbSTT3A oligosaccharyltransferase (OST) first selectively transfers biantennary Man(5)GlcNAc(2) from the lipid-linked oligosaccharide (LLO) donor Man(5)GlcNAc(2)-PP-Dol to N-glycosylation sequons in acidic to neutral peptide sequences and TbSTT3B selectively transfers triantennary Man(9)GlcNAc(2) to any remaining sequons. In this paper, we investigate the specificities of the two OSTs for their preferred LLO donors by glycotyping the variant surface glycoprotein (VSG) synthesized by bloodstream-form T. brucei TbALG12 null mutants. The TbALG12 gene encodes the α1-6-mannosyltransferase that converts Man(7)GlcNAc(2)-PP-Dol to Man(8)GlcNAc(2)-PP-Dol. The VSG synthesized by the TbALG12 null mutant in the presence and the absence of α-mannosidase inhibitors was characterized by electrospray mass spectrometry both intact and as pronase glycopetides. The results show that TbSTT3A is able to transfer Man(7)GlcNAc(2) as well as Man(5)GlcNAc(2) to its preferred acidic glycosylation site at Asn263 and that, in the absence of Man(9)GlcNAc(2)-PP-Dol, TbSTT3B transfers both Man(7)GlcNAc(2) and Man(5)GlcNAc(2) to the remaining site at Asn428, albeit with low efficiency. These data suggest that the preferences of TbSTT3A and TbSTT3B for their LLO donors are based on the c-branch of the Man(9)GlcNAc(2) oligosaccharide, such that the presence of the c-branch prevents recognition and/or transfer by TbSTT3A, whereas the presence of the c-branch enhances recognition and/or transfer by TbSTT3B.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Single-subunit oligosaccharyltransferases of Trypanosoma brucei display different and predictable peptide acceptor specificities

Trypanosoma brucei causes African trypanosomiasis and contains three full-length oligosaccharyltransferase (OST) genes; two of which, TbSTT3A and TbSTT3B, are expressed in the bloodstream form of the parasite. These OSTs have different peptide acceptor and lipid-linked oligosaccharide donor specificities, and trypanosomes do not follow many of the canonical rules developed for other eukaryotic ...

متن کامل

Distinct donor and acceptor specificities of Trypanosoma brucei oligosaccharyltransferases

Asparagine-linked glycosylation is catalysed by oligosaccharyltransferase (OTase). In Trypanosoma brucei OTase activity is catalysed by single-subunit enzymes encoded by three paralogous genes of which TbSTT3B and TbSTT3C can complement a yeast Deltastt3 mutant. The two enzymes have overlapping but distinct peptide acceptor specificities, with TbSTT3C displaying an enhanced ability to glycosyla...

متن کامل

Glycoengineering of yeasts from the perspective of glycosylation efficiency.

N-linked glycosylation of proteins is one of the most common posttranslational modifications. N-glycan structures and N-glycosylation efficiency are crucial parameters in the production of N-glycosylated proteins. Yeast cells can be seen as an attractive production host for therapeutic glycoproteins and pioneering work of glycoengineering was performed in Pichia pastoris, realizing yeast strain...

متن کامل

Characterization of the single-subunit oligosaccharyltransferase STT3A from Trypanosoma brucei using synthetic peptides and lipid-linked oligosaccharide analogs

The initial transfer of a complex glycan in protein N-glycosylation is catalyzed by oligosaccharyltransferase (OST), which is generally a multisubunit membrane protein complex in the endoplasmic reticulum but a single-subunit enzyme (ssOST) in some protists. To investigate the reaction mechanism of ssOST, we recombinantly expressed, purified and characterized the STT3A protein from Trypanosoma ...

متن کامل

Characterization of a novel trans-sialidase of Trypanosoma brucei procyclic trypomastigotes and identification of procyclin as the main sialic acid acceptor

Here we report the presence of a trans-sialidase on the surface of Trypanosoma brucei culture-derived procyclic trypomastigotes. The enzyme is not detected in lysates of bloodstream trypomastigotes enriched for either stumpy or slender forms. The trans-sialidase catalyzes the transfer of alpha(2-3)-linked sialic acid residues to lactose. beta-galactopyranosyl residues are at least 100 times bet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2012