Motion boundary based sampling and 3D co-occurrence descriptors for action recognition
نویسندگان
چکیده
Recent studies witness the success of Bag-of-Features (BoF) frameworks for video based human action recognition. The detection and description of local interest regions are two fundamental problems in BoF framework. In this paper, we propose a motion boundary based sampling strategy and spatialtemporal (3D) co-occurrence descriptors for action video representation and recognition. Our sampling strategy is partly inspired by the recent success of dense trajectory (DT) based features [1] for action recognition. Compared with DT, we densely sample spatial-temporal cuboids along motion boundary which can greatly reduce the number of valid trajectories while preserve the discriminative power. Moreover, we develop a set of 3D co-occurrence descriptors which take account of the spatial-temporal context within local cuboids and deliver rich information for recognition. Furthermore, we decompose each 3D co-occurrence descriptor at pixel level and bin level and integrate the decomposed components with a multi-channel framework, which can improve the performance significantly. To evaluate the proposed methods, we conduct extensive experiments on three benchmarks including KTH, YouTube and HMDB51. The results show that our sampling strategy significantly reduces the computational cost of point tracking without degrading performance. Meanwhile, we achieve superior performance than the state-ofthe-art methods. We report 95.6% on KTH, 87.6% on YouTube and 51.8% on HMDB51.
منابع مشابه
Exploring Motion Boundary based Sampling and Spatial-Temporal Context Descriptors for Action Recognition
The most important problem in action recognition is how to represent an action video. The approaches can be roughly divided into four categories: (1) human pose based approaches which utilize human structure information; (2) global action template based approaches which capture appearance and motion information on the whole motion body; (3) local feature based approaches which mainly extract va...
متن کاملActions As Objects: A Novel Action Representation
In this paper, we propose to model an action based on both the shape and the motion of the object performing the action. When the object performs an action in 3D, the points on the outer boundary of the object are projected as 2D (x, y) contour in the image plane. A sequence of such 2D contours with respect to time generates a spatiotemporal volume (STV) in (x, y, t), which can be treated as 3D...
متن کاملMotion Boundary Trajectory for Human Action Recognition
In this paper, we propose a novel approach to extract local descriptors of a video, based on two ideas, one using motion boundary between objects, and, second, the resulting motion boundary trajectories extracted from videos, together with other local descriptors in the neighbourhood of the extracted motion boundary trajectories, histogram of oriented gradients, histogram of optical flow, motio...
متن کاملRobust action recognition using local motion and group sparsity
Recognizing actions in a video is a critical step for making many vision-based applications possible and has attracted much attention recently. However, action recognition in a video is a challenging task due to wide variations within an action, camera motion, cluttered background, and occlusions, to name a few. While dense sampling based approaches are currently achieving the stateof-the-art p...
متن کامل3D Hand Motion Evaluation Using HMM
Gesture and motion recognition are needed for a variety of applications. The use of human hand motions as a natural interface tool has motivated researchers to conduct research in the modeling, analysis and recognition of various hand movements. In particular, human-computer intelligent interaction has been a focus of research in vision-based gesture recognition. In this work, we introduce a 3-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Image Vision Comput.
دوره 32 شماره
صفحات -
تاریخ انتشار 2014