A Model-Based Clustering Method for Genomic Structural Variant Prediction and Genotyping Using Paired-End Sequencing Data
نویسندگان
چکیده
Structural variation (SV) has been reported to be associated with numerous diseases such as cancer. With the advent of next generation sequencing (NGS) technologies, various types of SV can be potentially identified. We propose a model based clustering approach utilizing a set of features defined for each type of SV events. Our method, termed SVMiner, not only provides a probability score for each candidate, but also predicts the heterozygosity of genomic deletions. Extensive experiments on genome-wide deep sequencing data have demonstrated that SVMiner is robust against the variability of a single cluster feature, and it significantly outperforms several commonly used SV detection programs. SVMiner can be downloaded from http://cbc.case.edu/svminer/.
منابع مشابه
I-37: Establishing High Resolution Genomic Profiles of Single Cells Using Microarray and Next-Generation Sequencing Technologies
The nature and pace of genome mutation is largely unknown. Standard methods to investigate DNA-mutation rely on arraying or sequencing DNA from a population of cells, hence the genetic composition of individual cells is lost and de novo mutation in cell(s) is concealed within the bulk signal. We developed methods based on (SNP-) arraying and next-generation sequencing of single-cell whole-genom...
متن کاملDetecting genomic indel variants with exact breakpoints in single- and paired-end sequencing data using SplazerS
MOTIVATION The reliable detection of genomic variation in resequencing data is still a major challenge, especially for variants larger than a few base pairs. Sequencing reads crossing boundaries of structural variation carry the potential for their identification, but are difficult to map. RESULTS Here we present a method for 'split' read mapping, where prefix and suffix match of a read may b...
متن کاملSV-Bay: structural variant detection in cancer genomes using a Bayesian approach with correction for GC-content and read mappability
MOTIVATION Whole genome sequencing of paired-end reads can be applied to characterize the landscape of large somatic rearrangements of cancer genomes. Several methods for detecting structural variants with whole genome sequencing data have been developed. So far, none of these methods has combined information about abnormally mapped read pairs connecting rearranged regions and associated global...
متن کاملDELLY: structural variant discovery by integrated paired-end and split-read analysis
MOTIVATION The discovery of genomic structural variants (SVs) at high sensitivity and specificity is an essential requirement for characterizing naturally occurring variation and for understanding pathological somatic rearrangements in personal genome sequencing data. Of particular interest are integrated methods that accurately identify simple and complex rearrangements in heterogeneous sequen...
متن کاملHTS-PEG: A Method for High Throughput Sequencing of the Paired-Ends of Genomic Libraries
Second generation sequencing has been widely used to sequence whole genomes. Though various paired-end sequencing methods have been developed to construct the long scaffold from contigs derived from shotgun sequencing, the classical paired-end sequencing of the Bacteria Artificial Chromosome (BAC) or fosmid libraries by the Sanger method still plays an important role in genome assembly. However...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012