Lsislif: Feature Extraction and Label Weighting for Sentiment Analysis in Twitter

نویسندگان

  • Hussam Hamdan
  • Patrice Bellot
  • Frédéric Béchet
چکیده

This paper describes our sentiment analysis systems which have been built for SemEval2015 Task 10 Subtask B and E. For subtask B, a Logistic Regression classifier has been trained after extracting several groups of features including lexical, syntactic, lexiconbased, Z score and semantic features. A weighting schema has been adapted for positive and negative labels in order to take into account the unbalanced distribution of tweets between the positive and negative classes. This system is ranked third over 40 participants, it achieves average F1 64.27 on Twitter data set 2015 just 0.57% less than the first system. We also present our participation in Subtask E in which our system has got the second rank with Kendall metric but the first one with Spearman for ranking twitter terms according to their association with the positive sentiment.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SentiSys at SemEval-2016 Task 4: Feature-Based System for Sentiment Analysis in Twitter

This paper describes our sentiment analysis system which has been built for Sentiment Analysis in Twitter Task of SemEval-2016. We have used a Logistic Regression classifier with different groups of features. This system is an improvement to our previous system Lsislif in Semeval-2015 after removing some features and adding new features extracted from a new automatic constructed sentiment lexicon.

متن کامل

2016 Olympic Games on Twitter: Sentiment Analysis of Sports Fans Tweets using Big Data Framework

Big data analytics is one of the most important subjects in computer science. Today, due to the increasing expansion of Web technology, a large amount of data is available to researchers. Extracting information from these data is one of the requirements for many organizations and business centers. In recent years, the massive amount of Twitter's social networking data has become a platform for ...

متن کامل

A Systematic Literature Review of Sentiment Analysis Techniques

Development of Web 2.0 has resulted in enormous increase in the vast source of opinionated user generated data. Sentiment Analysis includes extracting, grasping, arranging and presenting the feelings or suppositions communicated in the information gathered from the clients. This paper exhibits an efficient writing survey of different strategies of sentiment analysis. A model for sentiment analy...

متن کامل

Text Analytics of Customers on Twitter: Brand Sentiments in Customer Support

Brand community interactions and online customer support have become major platforms of brand sentiment strengthening and loyalty creation. Rapid brand responses to each customer request though inbound tweets in twitter and taking proper actions to cover the needs of customers are the key elements of positive brand sentiment creation and product or service initiative management in the realm of ...

متن کامل

RTRGO: Enhancing the GU-MLT-LT System for Sentiment Analysis of Short Messages

This paper describes the enhancements made to our GU-MLT-LT system (Günther and Furrer, 2013) for the SemEval-2014 re-run of the SemEval-2013 shared task on sentiment analysis in Twitter. The changes include the usage of a Twitter-specific tokenizer, additional features and sentiment lexica, feature weighting and random subspace learning. The improvements result in an increase of 4.18 F-measure...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015