Using the k-Nearest Neighbor Graph for Proximity Searching in Metric Spaces
نویسندگان
چکیده
Proximity searching consists in retrieving from a database, objects that are close to a query. For this type of searching problem, the most general model is the metric space, where proximity is defined in terms of a distance function. A solution for this problem consists in building an offline index to quickly satisfy online queries. The ultimate goal is to use as few distance computations as possible to satisfy queries, since the distance is considered expensive to compute. Proximity searching is central to several applications, ranging from multimedia indexing and querying to data compression and clustering. In this paper we present a new approach to solve the proximity searching problem. Our solution is based on indexing the database with the knearest neighbor graph (knng), which is a directed graph connecting each element to its k closest neighbors. We present two search algorithms for both range and nearest neighbor queries which use navigational and metrical features of the knng graph. We show that our approach is competitive against current ones. For instance, in the document metric space our nearest neighbor search algorithms perform 30% more distance evaluations than AESA using only a 0.25% of its space requirement. In the same space, the pivot-based technique is completely useless.
منابع مشابه
Non-zero probability of nearest neighbor searching
Nearest Neighbor (NN) searching is a challenging problem in data management and has been widely studied in data mining, pattern recognition and computational geometry. The goal of NN searching is efficiently reporting the nearest data to a given object as a query. In most of the studies both the data and query are assumed to be precise, however, due to the real applications of NN searching, suc...
متن کاملBest Proximity Point Result for New Type of Contractions in Metric Spaces with a Graph
In this paper, we introduce a new type of graph contraction using a special class of functions and give a best proximity point theorem for this contraction in complete metric spaces endowed with a graph under two different conditions. We then support our main theorem by a non-trivial example and give some consequences of best proximity point of it for usual graphs.
متن کاملGraphs for Metric Space Searching
[Who doesn’t understand a glance, won’t understand a long explanation either.] – Arab proverb The problem of Similarity Searching consists in finding the elements from a set which are similar to a given query under some criterion. If the similarity is expressed by means of a metric, the problem is called Metric Space Searching. In this thesis we present new methodologies to solve this problem u...
متن کاملSpace-Time Tradeoffs for Proximity Searching in Doubling Spaces
We consider approximate nearest neighbor searching in metric spaces of constant doubling dimension. More formally, we are given a set S of n points and an error bound ε > 0. The objective is to build a data structure so that given any query point q in the space, it is possible to efficiently determine a point of S whose distance from q is within a factor of (1 + ε) of the distance between q and...
متن کاملApproximate nearest neighbor algorithm based on navigable small world graphs
We propose a novel approach to solving the approximate k-nearest neighbor search problem in metric spaces. The search structure is based on a navigable small world graph with vertices corresponding to the stored elements, edges to links between them, and a variation of greedy algorithm for searching. The navigable small world is created simply by keeping old Delaunay graph approximation links p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005