piggyBac
نویسنده
چکیده
In addition to their natural role in eukaryotic genome evolution, transposons can be powerful tools for functional genomics in diverse taxa. The piggyBac transposon has been applied as such in eukaryotic parasites, both protozoa and helminths, and in several important vector mosquitoes. piggyBac is advantageous for functional genomics because of its ability to transduce a wide range of taxa, its capacity to integrate large DNA 'cargoes' relative to other mobile genetic elements, its propensity to target transcriptional units and its ability to re-mobilize without leaving a pattern of non-excised sequences or 'footprint' in the genome. We recently demonstrated that piggyBac can integrate transgenes into the genome of the parasitic nematode Strongyloides ratti, an important model for parasitic nematode biology and a close relative of the significant human pathogen S. stercoralis. Unlike transgenes encoded in conventional plasmid vectors, which we assume are assembled into multi-copy episomal arrays as they are in Caenorhabditis elegans, transgenes integrated via piggyBac are not only stably inherited in S. ratti, they are also continuously expressed. This has allowed derivation of the first stable transgene expressing lines in any parasitic nematode, a significant advance in the development of functional genomic tools for these important pathogens.
منابع مشابه
Highly conserved piggyBac elements in noctuid species of Lepidoptera.
The piggyBac transposable element was originally discovered in a Trichoplusia ni cell line and nearly identical elements were subsequently discovered in the tephritid fly, Bactrocera dorsalis. This suggested the existence of piggyBac in additional insects and this study shows highly conserved, though not identical, piggyBac sequences in the noctuid species Heliocoverpa armigera, H. zea, and Spo...
متن کاملPrecise marker excision system using an animal-derived piggyBac transposon in plants
Accurate and effective positive marker excision is indispensable for the introduction of desired mutations into the plant genome via gene targeting (GT) using a positive/negative counter selection system. In mammals, the moth-derived piggyBac transposon system has been exploited successfully to eliminate a selectable marker from a GT locus without leaving a footprint. Here, we present evidence ...
متن کاملPost-integration stability of piggyBac in Aedes aegypti.
The post-integration activity of piggyBac transposable element gene vectors in Aedes aegypti mosquitoes was tested under a variety of conditions. The embryos from five independent transgenic lines of Ae. aegypti, each with a single integrated non-autonomous piggyBac transposable element gene vector, were injected with plasmids containing the piggyBac transposase open-reading frame under the reg...
متن کاملGenome-wide target profiling of piggyBac and Tol2 in HEK 293: pros and cons for gene discovery and gene therapy
BACKGROUND DNA transposons have emerged as indispensible tools for manipulating vertebrate genomes with applications ranging from insertional mutagenesis and transgenesis to gene therapy. To fully explore the potential of two highly active DNA transposons, piggyBac and Tol2, as mammalian genetic tools, we have conducted a side-by-side comparison of the two transposon systems in the same setting...
متن کاملpiggyBac can bypass DNA synthesis during cut and paste transposition.
DNA synthesis is considered a defining feature in the movement of transposable elements. In determining the mechanism of piggyBac transposition, an insect transposon that is being increasingly used for genome manipulation in a variety of systems including mammalian cells, we have found that DNA synthesis can be avoided during piggyBac transposition, both at the donor site following transposon e...
متن کاملThe piggyBac element is capable of precise excision and transposition in cells and embryos of the mosquito, Anopheles gambiae.
The piggyBac transposable element was tested for transposition activity in plasmid-based excision and inter-plasmid transposition assays to determine if this element would function in Anopheles gambiae cells and embryos. In the Mos55 cell line, precise excision of the piggyBac element was observed only in the presence of a helper plasmid. Excision occurred at a rate of 1 event per 1000 donor pl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2013