Incidence Angle Influence on the Quality of Terrestrial Laser Scanning Points
نویسندگان
چکیده
A terrestrial laser scanner measures the distance to an object with a precision in the order of millimeters. The quality of each single point in a point cloud affects post-processing applications, such as deformation analysis or 3D modeling. The quality of a scan point is influenced by four major factors: instrument calibration, atmospheric conditions, object properties and scan geometry. In this paper, the latter factor is investigated focusing on the influence of incidence angle, i.e. the angle between incoming laser beam and surface normal, on the precision of a scan point. It is shown that by considering the influence of incidence angle on the signal to noise ratio, the increase in measurement noise with increasing incidence angle can be successfully modeled. The implications of this model are demonstrated on two practical experiments. In the first experiment, a reference plate is scanned at a fixed distance but under different scan angles. The analysis shows that also in a practical setting the influence of incidence angle could be successfully isolated, allowing the conclusion that above 60◦ the incidence angle dominates the scan point precision. In the second experiment it is demonstrated that for a typical point cloud of a room, 20% of the measurement noise is due to incidence angle. The results of this research make it feasible to optimize the scan locations in a measurement setup in the sense that noise due to incidence angle is minimized.
منابع مشابه
Optimizing Terrestrial Laser Scanning Measurement Set-up
One of the main applications of the terrestrial laser scanner is the visualization, modeling and monitoring of man-made structures like buildings. Especially surveying applications require on one hand a quickly obtainable, high resolution point cloud but also need observations with a known and well described quality. To obtain a 3D point cloud, the scene is scanned from different positions arou...
متن کاملThe Properties of Terrestrial Laser System Intensity for Measuring Leaf Geometries: A Case Study with Conference Pear Trees (Pyrus Communis)
Light Detection and Ranging (LiDAR) technology can be a valuable tool for describing and quantifying vegetation structure. However, because of their size, extraction of leaf geometries remains complicated. In this study, the intensity data produced by the Terrestrial Laser System (TLS) FARO LS880 is corrected for the distance effect and its relationship with the angle of incidence between the l...
متن کاملOcclusion Area as Suitable Guidance for Terrestrial Laser Scanner Localization
Terrestrial Laser Scanner (TLS) technology, have altered quickly data acquisition for map production in surveying. In many cases, it is impossible to complete surveying of the desired area without TLS displacement in one station to another. Occlusion is innate in data acquisition, with this type of device. To solve this problem, TLS devices should be placed in different locations and scanning o...
متن کاملGeometric Accuracy Investigations of the Latest Terrestrial Laser Scanning Systems
Currently the second, or for some manufacturers even the third, generation of terrestrial laser scanning systems is available on the market. Although the new generation of terrestrial 3D laser scanning offers several new (geodetic) features and better performance, it is still essential to test the accuracy behaviour of the new systems for optimised use in each application. As a continuation of ...
متن کاملA Normalization scheme for Terrestrial LiDAR Intensity Data by Range and Incidence Angle
Automatic registration, classification and segmentation of Terrestrial Laser Scanner (TLS) data are of great interest in Geoinformatics & Autonomous vehicle research. Along with dense and accurate 3D geometric data, laser scanners also collect return intensity information. Inclusion of this spectral information has potential to improve the working of the above mentioned processes. However, thes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009