Turbulent protostellar discs

نویسنده

  • A Brandenburg
چکیده

Aspects of turbulence in protostellar accretion discs are being reviewed. The emergence of dead zones due to poor ionization and alternatives to the magneto-rotational instability are discussed. The coupling between dust and gas in protostellar accretion discs is explained and the turbulent drag is compared with laminar drag in the Stokes and Epstein regimes. Finally, the significance of magnetic-field generation in turbulent discs is emphasized in connection with driving outflows and with star–disc coupling. PACS numbers: 97.82.−j, 97.82.Fs, 97.82.Jw (Some figures in this article are in colour only in the electronic version.)

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Angular momentum transport in protostellar discs

Angular momentum transport in protostellar discs can take place either radially, through turbulence induced by the magnetorotational instability (MRI), or vertically, through the torque exerted by a large-scale magnetic field that threads the disc. Using semi-analytic and numerical results, we construct a model of steady-state discs that includes vertical transport by a centrifugally driven win...

متن کامل

Radial and vertical angular momentum transport in protostellar discs

Angular momentum in protostellar discs can be transported either radially, through turbulence induced by the magnetorotational instability (MRI), or vertically, through the torque exerted by a large-scale magnetic field. We present a model of steady-state discs where these two mechanisms operate at the same radius and derive approximate criteria for their occurrence in an ambipolar diffusion do...

متن کامل

Turbulent transport and its effect on the dead zone in protoplanetary discs

Context. Protostellar accretion discs have cool, dense midplanes where externally originating ionisation sources such as X–rays or cosmic rays are unable to penetrate. This suggests that for a wide range of radii, MHD turbulence can only be sustained in the surface layers where the ionisation fraction is sufficiently high. A dead zone is expected to exist near the midplane, such that active acc...

متن کامل

Magnetic fields and radiative feedback in the star formation process

Star formation is a complex process involving the interplay of many physical effects, including gravity, turbulent gas dynamics, magnetic fields and radiation. Our understanding of the process has improved substantially in recent years, primarily as a result of our increased ability to incorporate the relevant physics in numerical calculations of the star formation process. In this contribution...

متن کامل

Protostellar feedback in turbulent fragmentation: consequences for stellar clustering and multiplicity

Stars are strongly clustered on both large (∼pc) and small (∼binary) scales, but there are few analytic or even semi-analytic theories for the correlation function and multiplicity of stars. In this paper, we present such a theory, based on our recently developed semi-analytic framework called MISFIT (Minimalistic Star Formation Including Turbulence), which models gravitoturbulent fragmentation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008