Suitability of invertebrate and vertebrate cells in a portable impedance-based toxicity sensor: temperature mediated impacts on long-term survival.
نویسندگان
چکیده
Using ECIS (electric cell-substrate impedance sensing) to monitor the impedance of vertebrate cell monolayers provides a sensitive measure of toxicity for a wide range of chemical toxicants. One major limitation to using a cell-based sensor for chemical toxicant detection in the field is the difficulty in maintaining cell viability over extended periods of time prior to use. This research was performed to identify cell lines suitable for ECIS-based toxicity sensing under field conditions. A variety of invertebrate and vertebrate cell lines were screened for their abilities to be stored for extended periods of time on an enclosed fluidic biochip with minimal maintenance. Three of the ten cell lines screened exhibited favorable portability characteristics on the biochips. Interestingly, all three cell lines were derived from ectothermic vertebrates, and the storage temperature that allowed long-term cell survival on the enclosed fluidic biochips was also at the lower end of reported body temperature for the organism, suggesting that reduced cellular metabolism may be essential for longterm survival on the biochip. Future work with the ectothermic vertebrate cells will characterize their sensitivity to a wide range of chemical toxicants to determine if they are good candidates for use in a field portable toxicity sensor.
منابع مشابه
Improved cell sensitivity and longevity in a rapid impedance-based toxicity sensor.
A number of toxicity sensors for testing field water using a range of eukaryotic cell types have been proposed, but it has been difficult to identify sensors with both appropriate sensitivity to toxicants and the potential for long-term viability. Assessment of bovine pulmonary artery endothelial cell (BPAEC) monolayer electrical impedance with electric cell-substrate impedance sensing (ECIS) s...
متن کاملA portable cell-based impedance sensor for toxicity testing of drinking water.
A major limitation to using mammalian cell-based biosensors for field testing of drinking water samples is the difficulty of maintaining cell viability and sterility without an on-site cell culture facility. This paper describes a portable automated bench-top mammalian cell-based toxicity sensor that incorporates enclosed fluidic biochips containing endothelial cells monitored by Electric Cell-...
متن کاملIsolation and long-term culture of neural stem cells from Acipenser persicus (Borodin, 1897)
In the present study, an in vitro brain cell culture was developed from neural cells of Persian sturgeon (Acipenser persicus). The tissue samples collected from the anterior, middle and posterior regions of the brain were cultivated separately in DMEM/F12 medium supplemented with 15% fetal bovine serum, antibiotic and antimycotic. The medium was refreshed every 3 days. The cells became confluen...
متن کاملPreparation and Testing of Impedance-based Fluidic Biochips with RTgill-W1 Cells for Rapid Evaluation of Drinking Water Samples for Toxicity.
This manuscript describes how to prepare fluidic biochips with Rainbow trout gill epithelial (RTgill-W1) cells for use in a field portable water toxicity sensor. A monolayer of RTgill-W1 cells forms on the sensing electrodes enclosed within the biochips. The biochips are then used for testing in a field portable electric cell-substrate impedance sensing (ECIS) device designed for rapid toxicity...
متن کاملIsolation and long-term culture of neural stem cells from chondrostei fish Acipenser persicus
In the present study, an in vitro brain cell culture was developed from Persian sturgeon (Acipenser persicus). The tissues from anterior, middle and posterior regions of the brain were dissected, dispersed and cultivated separately in DMEM/F12 medium supplemented with 15% fetal bovine serum, antibiotic and antimycotic. The medium was changed every 3 days. The cells became confluent after about ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Toxicology in vitro : an international journal published in association with BIBRA
دوره 27 7 شماره
صفحات -
تاریخ انتشار 2013