New Insights into Solar Wind Physics from Soho
نویسنده
چکیده
The Solar and Heliospheric Observatory (SOHO) was launched in December 1995 with a suite of instruments designed to answer long-standing questions about the Sun’s internal structure, its extensive outer atmosphere, and the solar wind. This paper reviews the new understanding of the physical processes responsible for the solar wind that have come from the past 8 years of SOHO observations, analysis, and theoretical work. For example, the UVCS instrument on SOHO has revealed the acceleration region of the fast solar wind to be far from simple thermal equilibrium. Evidence for preferential acceleration of ions, 100 million K ion temperatures, and marked departures from Maxwellian velocity distributions all point to specific types of collisionless heating processes. The slow solar wind, typically associated with bright helmet streamers, has been found to share some of the nonthermal characteristics of the fast wind. Abundance measurements from spectroscopy and visible-light coronagraphic movies from LASCO have led to a better census of the plasma components making up the slow wind. The origins of the solar wind in the photosphere and chromosphere have been better elucidated with disk spectroscopy from the SUMER and CDS instruments. Finally, the impact of the solar wind on spacecraft systems, ground-based technology, and astronauts has been greatly aided by having continuous solar observations at the Earth-Sun L1 point, and SOHO has set a strong precedent for future studies of space weather.
منابع مشابه
Coronal Heating versus Solar Wind Acceleration
Parker’s initial insights from 1958 provided a key causal link between the heating of the solar corona and the acceleration of the solar wind. However, we still do not know what fraction of the solar wind’s mass, momentum, and energy flux is driven by Parker-type gas pressure gradients, and what fraction is driven by, e.g., wave-particle interactions or turbulence. SOHO has been pivotal in brin...
متن کاملAn Attempt to Detect Coronal Mass Ejections in Lyman-α Using SOHO Swan
In this study, the possibility that coronal mass ejections (CMEs) may be observed in neutral Lyman-α emission was investigated. An observing campaign was initiated for SWAN (Solar Wind ANisotropies), a Lyman-α scanning photometer on board the Solar and Heliospheric Observatory (SOHO) dedicated to monitoring the latitude distribution of the solar wind from its imprints on the interstellar sky ba...
متن کاملMagnetic collimation of the solar and stellar winds
We resolve the paradox that although magnetic collimation of an isotropic solar wind results in an enhancement of its proton flux along the polar directions, several observations indicate a wind proton flux peaked at the equator. To that goal, we solve the full set of the timedependent MHD equations describing the axisymmetric outflow of plasma from the magnetized and rotating Sun, either in it...
متن کاملOrigins of the slow and the ubiquitous fast solar wind
We present in this Letter the first coordinated radio occultation measurements and ultraviolet observations of the inner corona below 5.5 Rs, obtained during the Galileo solar conjunction in January 1997, to establish the origin of the slow solar wind. Limits on the flow speed are derived from the Doppler dimming of the resonantly scattered component of the oxygen 1032 Å and 1037 Å lines as mea...
متن کاملFast solar wind acceleration by Alfvén waves: observable effects on the EUV lines detected by SOHO/UVCS
SOHO/UVCS observations of the most intense EUV spectral lines emitted by the solar corona have been providing us a good opportunity to study in detail the acceleration regions of the solar wind. In this work we aim at deriving useful diagnostics and identifying possible signatures of Alfvén waves momentum deposition. More specifically we investigate, with the help of a detailed wind model (Orla...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004