Widths and Uncertainty Principles for LTI and Slowly Varying Systems

نویسندگان

  • George Zames
  • Yi Wang
چکیده

The optimal worst-case uncertainty that can be achieved by identification depends on the observation time. In the first part of the paper, this dependence is evaluated for selected linear time invariant systems in the 2’ and H” norms and shown to be derivable from a monotonicity principle. The minimal time required is shown to depend on the metric complexity of the a priori information set. Two notions of n-width (or metric dimension) are introduced to characterize this complexity. In the second part of the paper, the results are applied to systems in which the law governing the evolution of the uncertain elements is not time invariant. Such systems cannot be identified accurately. The inherent uncertainty is bounded in the case of slow time variation. The n-widths and related optimal inputs provide benchmarks for the evaluation of actual inputs occurring in adaptive feedback systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AIOSC: Analytical Integer Word-length Optimization based on System Characteristics for Recursive Fixed-point LTI Systems

The integer word-length optimization known as range analysis (RA) of the fixed-point designs is a challenging problem in high level synthesis and optimization of linear-time-invariant (LTI) systems. The analysis has significant effects on the resource usage, accuracy and efficiency of the final implementation, as well as the optimization time. Conventional methods in recursive LTI systems suffe...

متن کامل

Adaptive fuzzy pole placement for stabilization of non-linear systems

A new approach for pole placement of nonlinear systems using state feedback and fuzzy system is proposed. We use a new online fuzzy training method to identify and to obtain a fuzzy model for the unknown nonlinear system using only the system input and output. Then, we linearized this identified model at each sampling time to have an approximate linear time varying system. In order to stabilize...

متن کامل

Convex Necessary and Sufficient Conditions for Model (1n)Validation under SLTV Structured Uncertainty

This paper deals with the problem of model (in)validation of discrete-time, causal, LTI stable models subject to Slowly Linear Time Varying structured uncertainly, using freqnency-domain data corrupted by additive noise. It is nell known that in the case of structured LTI uncertainty the problem is NP hard in the number of uncertainty blocks. The main contribution of this paper shows that, on t...

متن کامل

Finite time stabilization of time-delay nonlinear systems with uncertainty and time-varying delay

In this paper, the problem of finite-time stability and finite-time stabilization for a specific class of dynamical systems with nonlinear functions in the presence time-varying delay and norm-bounded uncertainty terms is investigated. Nonlinear functions are considered to satisfy the Lipchitz conditions. At first, sufficient conditions to guarantee the finite-time stability for time-delay nonl...

متن کامل

ROBUST $H_{infty}$ CONTROL FOR T–S TIME-VARYING DELAY SYSTEMS WITH NORM BOUNDED UNCERTAINTY BASED ON LMI APPROACH

In this paper we consider the problem of delay-dependent robustH1 control for uncertain fuzzy systems with time-varying delay. The Takagi–Sugeno (T–S) fuzzy model is used to describe such systems. Time-delay isassumed to have lower and upper bounds. Based on the Lyapunov-Krasovskiifunctional method, a sufficient condition for the existence of a robust $H_{infty}$controller is obtained. The fuzz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004