A new false positive reduction method for MCCs detection in digital mammography
نویسندگان
چکیده
A new mixed feature multistage false positive (FP) reduction method has been developed for improving the FP reduction performance. Eleven features were extracted from both spatial and morphology domains in order to describe the micro-calcification clusters (MCCs) from different perspectives. These features are grouped into three categories: gray-level description, shape description and clusters description. Two feature sets that focus on describing MCCs on every single calcification and on clustered calcifications, respectively, were combined with a back-propagation (BP) neural network with Kalman filter (KF) [3] to obtain the best performance of FP reduction. First, 9 of the 11 gray-level description and shape description features were employed with BP neural network to eliminate all the obvious FP calcifications in the image. Second, the remaining MCCs will be classified into several clusters by a widely used criterion in clinical practice, and then the two cluster description features will be added to the first feature set to eliminate the FP clusters from the remaining MCCs. The performance results of this approach were obtained using an image database of 100 real cases of patient’s mammogram images in H. Lee Moffitt Cancer Center imaging program [3].
منابع مشابه
Reduction in false-positive results after introduction of digital mammography: analysis from four population-based breast cancer screening programs in Spain.
PURPOSE To evaluate the effect of the introduction of digital mammography on the recall rate, detection rate, false-positive rate, and rates of invasive procedures in a cohort of women from four population-based breast cancer screening programs in Spain. MATERIALS AND METHODS The study was approved by the ethics committee; informed consent was not required. A total of 242,838 mammograms (171,...
متن کاملComparing Methods for segmentation of Microcalcification Clusters in Digitized Mammograms
The appearance of microcalcifications in mammograms is one of the early signs of breast cancer. So, early detection of microcalcification clusters (MCCs) in mammograms can be helpful for cancer diagnosis and better treatment of breast cancer. In this paper a computer method has been proposed to support radiologists in detection MCCs in digital mammography. First, in order to facilitate and impr...
متن کاملDetection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods
Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...
متن کاملDetection and Classification of Breast Cancer in Mammography Images Using Pattern Recognition Methods
Introduction: In this paper, a method is presented to classify the breast cancer masses according to new geometric features. Methods: After obtaining digital breast mammogram images from the digital database for screening mammography (DDSM), image preprocessing was performed. Then, by using image processing methods, an algorithm was developed for automatic extracting of masses from other norma...
متن کاملBreast abnormalities segmentation using the wavelet transform coefficients aggregation
Introduction: Breast cancer is the most common cancer among women in the world. The automatic detection of masses in digital mammograms is a challenging task and a major step in the development of breast cancer CAD systems. In this study, we introduce a new method for automatic detection of suspicious mass candidate (SMC) regions in a mammogram. Methods: Mammography is widely used for the early...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001