Tutte Polynomials

نویسنده

  • Andrew Berget
چکیده

Let ∆ be a finite sequence of n vectors from a vector space over any field. We consider the subspace of Sym(V) spanned by Q v∈S v, where S is a subsequence of ∆. A result of Orlik and Terao provides a doubly indexed direct sum of this space. The main theorem is that the resulting Hilbert series is the Tutte polynomial evaluation T (∆; 1 + x, y). Results of Ardila and Postnikov, Orlik and Terao, Terao, and Wagner are obtained as corollaries.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tutte polynomials of wheels via generating functions

We find an explicit expression of the Tutte polynomial of an $n$-fan. We also find a formula of the Tutte polynomial of an $n$-wheel in terms of the Tutte polynomial of $n$-fans. Finally, we give an alternative expression of the Tutte polynomial of an $n$-wheel and then prove the explicit formula for the Tutte polynomial of an $n$-wheel.

متن کامل

Tutte polynomials of hyperplane arrangements and the finite field method

The Tutte polynomial is a fundamental invariant associated to a graph, matroid, vector arrangement, or hyperplane arrangement, which answers a wide variety of questions about its underlying object. This short survey focuses on some of the most important results on Tutte polynomials of hyperplane arrangements. We show that many enumerative, algebraic, geometric, and topological invariants of a h...

متن کامل

Chain polynomials and Tutte polynomials

The recently introduced chain and sheaf polynomials of a graph are shown to be essentially equivalent to a weighted version of the Tutte polynomial. c © 2002 Elsevier Science B.V. All rights reserved.

متن کامل

Tutte Polynomials of Signed Graphs and Jones Polynomials of Some Large Knots

It is well-known that the Jones polynomial of a knot is closely related to the Tutte polynomial of a special graph obtained from a regular projection of the knot. In this paper, we study the Tutte polynomials for signed graphs. We show that if a signed graph is constructed from a simpler graph via k-thickening or k-stretching, then its Tutte polynomial can be expressed in terms of the Tutte pol...

متن کامل

The arithmetic Tutte polynomials of the classical root systems

Many combinatorial and topological invariants of a hyperplane arrangement can be computed in terms of its Tutte polynomial. Similarly, many invariants of a hypertoric arrangement can be computed in terms of its arithmetic Tutte polynomial. We compute the arithmetic Tutte polynomials of the classical root systems An, Bn, Cn, and Dn with respect to their integer, root, and weight lattices. We do ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009