D-Optimal Input Design for Nonlinear FIR-type Systems: A Dispersion-based Approach

نویسندگان

  • Alexander De Cock
  • Michel Gevers
  • Johan Schoukens
چکیده

Optimal input design is an important step of the identification process in order to reduce the model variance. In this work a D-optimal input design method for finite-impulse-response-type nonlinear systems is presented. The optimization of the determinant of the Fisher information matrix is expressed as a convex optimization problem. This problem is then solved using a dispersion-based optimization scheme, which is easy to implement and converges monotonically to the optimal solution. Without constraints, the optimal design cannot be realized as a time sequence. By imposing that the design should lie in the subspace described by a symmetric and non-overlapping set, a realizable design is found. A graph-based method is used in order to find a time sequence that realizes this optimal constrained design. These methods are illustrated on a numerical example of which the results are thoroughly discussed. Additionally the computational speed of the algorithm is compared with the general convex optimizer cvx.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

D-Optimal InputDesign forFIR-typeNonlinear Systems:A Dispersion-basedApproach

Optimal input design is an important step of the identification process in order to reduce the model variance. In this work a D-optimal input design method for FIR-type nonlinear systems is presented. The optimization of the determinant of the Fisher matrix is expressed as a convex optimization problem. The optimization is performed using an equivalent dispersionbased criterion. This method is ...

متن کامل

Design of nonlinear parity approach to fault detection and identification based on Takagi-Sugeno fuzzy model and unknown input observer in nonlinear systems

In this study, a novel fault detection scheme is developed for a class of nonlinear system in the presence of sensor noise. A nonlinear Takagi-Sugeno fuzzy model is implemented to create multiple models. While the T-S fuzzy model is used for only the nonlinear distribution matrix of the fault and measurement signals, a larger category of nonlinear systems is considered. Next, a mapping to decou...

متن کامل

Design of a Novel Framework to Control Nonlinear Affine Systems Based on Fast Terminal Sliding-Mode Controller

In this paper, a novel approach for finite-time stabilization of uncertain affine systems is proposed. In the proposed approach, a fast terminal sliding mode (FTSM) controller is designed, based on the input-output feedback linearization of the nonlinear system with considering its internal dynamics. One of the main advantages of the proposed approach is that only the outputs and external state...

متن کامل

Optimal Control of Nonlinear Multivariable Systems

This paper concerns a study on the optimal control for nonlinear systems. An appropriate alternative in order to alleviate the nonlinearity of a system is the exact linearization approach. In this fashion, the nonlinear system has been linearized using input-output feedback linearization (IOFL). Then, by utilizing the well developed optimal control theory of linear systems, the compensated ...

متن کامل

A Linear Matrix Inequality (LMI) Approach to Robust Model Predictive Control (RMPC) Design in Nonlinear Uncertain Systems Subjected to Control Input Constraint

In this paper, a robust model predictive control (MPC) algorithm is addressed for nonlinear uncertain systems in presence of the control input constraint. For achieving this goal, firstly, the additive and polytopic uncertainties are formulated in the nonlinear uncertain systems. Then, the control policy can be demonstrated as a state feedback control law in order to minimize a given cost funct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Automatica

دوره 73  شماره 

صفحات  -

تاریخ انتشار 2016