The Influence of Thermal Pressure on Equilibrium Models of Hypermassive Neutron Star Merger Remnants
نویسندگان
چکیده
The merger of two neutron stars leaves behind a rapidly spinning hypermassive object whose survival is believed to depend on the maximum mass supported by the nuclear equation of state, angular momentum redistribution by (magneto-)rotational instabilities, and spindown by gravitational waves. The high temperatures (∼5 − 40MeV) prevailing in the merger remnant may provide thermal pressure support that could increase its maximum mass and, thus, its life on a neutrino-cooling timescale. We investigate the role of thermal pressure support in hypermassive merger remnants by computing sequences of spherically-symmetric and axisymmetric uniformly and differentially rotating equilibrium solutions to the general-relativistic stellar structure equations. Using a set of finite-temperature nuclear equations of state, we find that hot maximum-mass critically spinning configurations generally do not support larger baryonic masses than their cold counterparts. However, subcritically spinning configurations with mean density of less than a few times nuclear saturation density yield a significantly thermally enhanced mass. Even without decreasing the maximum mass, cooling and other forms of energy loss can drive the remnant to an unstable state. We infer secular instability by identifying approximate energy turning points in equilibrium sequences of constant baryonic mass parametrized by maximum density. Energy loss carries the remnant along the direction of decreasing gravitational mass and higher density until instability triggers collapse. Since configurations with more thermal pressure support are less compact and thus begin their evolution at a lower maximum density, they remain stable for longer periods after merger. Subject headings: dense matter equation of state stars: neutron
منابع مشابه
Effect of Differential Rotation on the Maximum Mass of Neutron Stars: Realistic Nuclear Equations of State
The merger of binary neutron stars is likely to lead to differentially rotating remnants. In this paper, we survey several cold nuclear equations of state (EOSs) and numerically construct models of differentially rotating neutron stars in general relativity. For each EOS we tabulate maximum allowed masses as a function of the degree of differential rotation. We also determine effective polytrop...
متن کاملModeling the Complete Gravitational Wave Spectrum of Neutron Star Mergers.
In the context of neutron star mergers, we study the gravitational wave spectrum of the merger remnant using numerical relativity simulations. Postmerger spectra are characterized by a main peak frequency f2 related to the particular structure and dynamics of the remnant hot hypermassive neutron star. We show that f(2) is correlated with the tidal coupling constant κ(2)^T that characterizes the...
متن کاملConstraining nuclear equations of state using gravitational waves from hypermassive neutron stars.
Latest general relativistic simulations for the merger of binary neutron stars with realistic equations of states (EOSs) show that a hypermassive neutron star of an ellipsoidal figure is formed after the merger if the total mass is smaller than a threshold value which depends on the EOSs. The effective amplitude of quasiperiodic gravitational waves from such hypermassive neutron stars is approx...
متن کاملMagnetized hypermassive neutron-star collapse: a central engine for short gamma-ray bursts.
A hypermassive neutron star (HMNS) is a possible transient formed after the merger of a neutron-star binary. In the latest axisymmetric magnetohydrodynamic simulations in full general relativity, we find that a magnetized HMNS undergoes "delayed" collapse to a rotating black hole (BH) as a result of angular momentum transport via magnetic braking and the magnetorotational instability. The outco...
متن کاملEffects of hyperons in binary neutron star mergers.
Numerical simulations for the merger of binary neutron stars are performed in full general relativity incorporating both nucleonic and hyperonic finite-temperature equations of state (EOS) and neutrino cooling. It is found that even for the hyperonic EOS, a hypermassive neutron star is first formed after the merger for the typical total mass ≈2.7M(⊙), and subsequently collapses to a black hole ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014