Tapered Covariance: Bayesian Estimation and Asymptotics

نویسندگان

  • Benjamin SHABY
  • David RUPPERT
  • B. SHABY
  • D. RUPPERT
چکیده

The method of maximum tapered likelihood has been proposed as a way to quickly estimate covariance parameters for stationary Gaussian random fields. We show that under a useful asymptotic regime, maximum tapered likelihood estimators are consistent and asymptotically normal for covariance models in common use. We then formalize the notion of tapered quasi-Bayesian estimators and show that they too are consistent and asymptotically normal. We also present asymptotic confidence intervals for both types of estimators and show via simulation that they accurately reflect sampling variability, even at modest sample sizes. Proofs, an example, and detailed derivations are provided in the supplementary materials, available online.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structure of Wavelet Covariance Matrices and Bayesian Wavelet Estimation of Autoregressive Moving Average Model with Long Memory Parameter’s

In the process of exploring and recognizing of statistical communities, the analysis of data obtained from these communities is considered essential. One of appropriate methods for data analysis is the structural study of the function fitting by these data. Wavelet transformation is one of the most powerful tool in analysis of these functions and structure of wavelet coefficients are very impor...

متن کامل

Covariance Tapering in Spatial Statistics

In the analysis of spatial data, the inverse of the covariance matrix needs to be calculated. For example, the inverse is needed for best linear unbiased prediction or kriging, and is repeatedly calculated in the maximum likelihood estimation or the Bayesian inferences. Since the spatial sample size can be quite large, operations on the large covariance matrix can be a numerical challenge if no...

متن کامل

Mixture Modeling, Sparse Covariance Estimation and Parallel Computing in Bayesian Analysis

Mixture Modeling, Sparse Covariance Estimation and Parallel Computing in Bayesian Analysis

متن کامل

MATHEMATICAL ENGINEERING TECHNICAL REPORTS Inference on Eigenvalues of Wishart Distribution Using Asymptotics with respect to the Dispersion of Population Eigenvalues

In this paper we derive some new and practical results on testing and interval estimation problems for the population eigenvalues of a Wishart matrix based on the asymptotic theory for block-wise infinite dispersion of the population eigenvalues. This new type of asymptotic theory has been developed by the present authors in Takemura and Sheena (2005) and Sheena and Takemura (2007a,b) and in th...

متن کامل

Inference on Eigenvalues of Wishart Distribution Using Asymptotics with respect to the Dispersion of Population Eigenvalues

In this paper we derive some new and practical results on testing and interval estimation problems for the population eigenvalues of a Wishart matrix based on the asymptotic theory for block-wise infinite dispersion of the population eigenvalues. This new type of asymptotic theory has been developed by the present authors in Takemura and Sheena (2005) and Sheena and Takemura (2007a,b) and in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012