Yet Another ADNI Machine Learning Paper? Paving the Way Towards Fully-Reproducible Research on Classification of Alzheimer's Disease
نویسندگان
چکیده
In recent years, the number of papers on Alzheimer’s disease classification has increased dramatically, generating interesting methodological ideas on the use machine learning and feature extraction methods. However, practical impact is much more limited and, eventually, one could not tell which of these approaches are the most efficient. While over 90% of these works make use of ADNI an objective comparison between approaches is impossible due to variations in the subjects included, image pre-processing, performance metrics and cross-validation procedures. In this paper, we propose a framework for reproducible classification experiments using multimodal MRI and PET data from ADNI. The core components are: 1) code to automatically convert the full ADNI database into BIDS format; 2) a modular architecture based on Nipype in order to easily plug-in different classification and feature extraction tools; 3) feature extraction pipelines for MRI and PET data; 4) baseline classification approaches for unimodal and multimodal features. This provides a flexible framework for benchmarking different feature extraction and classification tools in a reproducible manner. Data management tools for obtaining the lists of subjects in AD, MCI converter, MCI nonconverters, CN classes are also provided. We demonstrate its use on all (1519) baseline T1 MR images and all (1102) baseline FDG PET images from ADNI 1, GO and 2 with SPM-based feature extraction pipelines and three different classification techniques (linear SVM, anatomically regularized SVM and multiple kernel learning SVM). The highest accuracies achieved were: 91% for AD vs CN, 83% for MCIc vs CN, 75% for MCIc vs MCInc, 94% for AD-Aβ+ vs CN-Aβand 72% for MCIc-Aβ+ vs MCInc-Aβ+. The code is publicly available . 1 Code at https://gitlab.icm-institute.org/aramislab/AD-ML Depends on the Clinica software platform, publicly available at http://www.clinica.run ar X iv :1 70 9. 07 26 7v 1 [ st at .M L ] 2 1 Se p 20 17 2 J. Samper-González et al.
منابع مشابه
Detection of Alzheimer\\\\\\\'s Disease using Multitracer Positron Emission Tomography Imaging
Alzheimer's disease is characterized by impaired glucose metabolism and demonstration of amyloid plaques. Individual positron emission tomography tracers may reveal specific signs of pathology that is not readily apparent on inspection of another one. Combination of multitracer positron emission tomography imaging yields promising results. In this paper, 57 Alzheimer's disease neuroimaging ini...
متن کاملPredicting Clinical Scores from Magnetic Resonance Scans in Alzheimer's Disease
Machine learning and pattern recognition methods have been used to diagnose Alzheimer's disease (AD) and mild cognitive impairment (MCI) from individual MRI scans. Another application of such methods is to predict clinical scores from individual scans. Using relevance vector regression (RVR), we predicted individuals' performances on established tests from their MRI T1 weighted image in two ind...
متن کاملErratum to multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer's disease [Neuroimage 59/2 (2012) 895-907]
Many machine learning and pattern classification methods have been applied to the diagnosis of Alzheimer’s disease (AD) and its prodromal stage, i.e., mild cognitive impairment (MCI). Recently, rather than predicting categorical variables as in classification, several pattern regression methods have also been used to estimate continuous clinical variables from brain images. However, most existi...
متن کاملMultiple Kernel Learning in the Primal for Multi-modal Alzheimer's Disease Classification
To achieve effective and efficient detection of Alzheimer's disease (AD), many machine learning methods have been introduced into this realm. However, the general case of limited training samples, as well as different feature representations typically makes this problem challenging. In this paper, we propose a novel multiple kernel-learning framework to combine multimodal features for AD classi...
متن کاملDiagnosis of Alzheimer's Disease Based on Structural MRI Images Using a Regularized Extreme Learning Machine and PCA Features
Alzheimer's disease (AD) is a progressive, neurodegenerative brain disorder that attacks neurotransmitters, brain cells, and nerves, affecting brain functions, memory, and behaviors and then finally causing dementia on elderly people. Despite its significance, there is currently no cure for it. However, there are medicines available on prescription that can help delay the progress of the condit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017