Multi-population methods in unconstrained continuous dynamic environments: The challenges

نویسندگان

  • Changhe Li
  • Trung Thanh Nguyen
  • Ming Yang
  • Shengxiang Yang
  • Sanyou Zeng
چکیده

The multi-population method has been widely used to solve unconstrained continuous dynamic optimization problems with the aim of maintaining multiple populations on different peaks to locate and track multiple changing peaks simultaneously. However, to make this approach efficient, several crucial challenging issues need to be addressed, e.g., how to determine the moment to react to changes, how to adapt the number of populations to changing environments, and how to determine the search area of each population. In addition, several other issues, e.g., communication between populations, overlapping search, the way to create multiple populations, detection of changes, and local search operators, should be also addressed. The lack of attention on these challenging issues within multi-population methods hinders the development of multi-population based algorithms in dynamic environments. In this paper, these challenging issues are comprehensively analyzed by a set of experimental studies from the algorithm design point of view. Experimental studies based on a set of popular algorithms show that the performance of algorithms is significantly affected by these challenging issues on the moving peaks benchmark.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimization in Uncertain and Complex Dynamic Environments with Evolutionary Methods

In the real world, many of the optimization issues are dynamic, uncertain, and complex in which the objective function or constraints can be changed over time. Consequently, the optimum of these issues is changed nonlinearly. Therefore, the optimization algorithms not only should search the global optimum value in the space but also should follow the path of optimal change in dynamic environmen...

متن کامل

Introducing a new meta-heuristic algorithm based on See-See Partridge Chicks Optimization to solve dynamic optimization problems

The SSPCO (See-See Particle Chicks Optimization) is a type of swarm intelligence algorithm derived from the behavior of See-See Partridge. Although efficiency of this algorithm has been proven for solving static optimization problems, it has not yet been tested to solve dynamic optimization problems. Due to the nature of NP-Hard dynamic problems, this algorithm alone is not able to solve such o...

متن کامل

Effects of Moving Landmark’s Speed on Multi-Robot Simultaneous Localization and Mapping in Dynamic Environments

Even when simultaneous localization and mapping (SLAM) solutions have been broadly developed, the vast majority of them relate to a single robot performing measurements in static environments. Researches show that the performance of SLAM algorithms deteriorates under dynamic environments. In this paper, a multi-robot simultaneous localization and mapping (MR-SLAM) system is implemented within a...

متن کامل

Addressing Fluidity through Mixed Technical - Design Practices

Ubicomp systems commonly rely on sensing and recognition capabilities to understand their context. While increasingly successful in simple environments, they face significant challenges addressing the fluid nature of less constrained, human settings. My thesis examines the construction of an interactive, mobile, sensor-based recognition system designed specifically for unconstrained settings. B...

متن کامل

OPTIMIZATION OF ENDURANCE TIME ACCELERATION FUNCTIONS FOR SEISMIC ASSESSMENT OF STRUCTURES

Numerical simulation of structural response is a challenging issue in earthquake engineering and there has been remarkable progress in this area in the last decade. Endurance Time (ET) method is a new response history based analysis procedure for seismic assessment and structural design in which structures are subjected to a gradually intensifying dynamic excitation and their seismic performanc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Inf. Sci.

دوره 296  شماره 

صفحات  -

تاریخ انتشار 2015