Minimal and minimal invariant Markov bases of decomposable models for contingency tables
نویسندگان
چکیده
We study Markov bases of decomposable graphical models consisting of primitive moves (i.e. square-free moves of degree two) by determining the structure of fibers of sample size two. We show that the number of elements of fibers of sample size two are powers of two and we characterize primitive moves in Markov bases in terms of connected components of induced subgraphs of the independence graph of a hierarchical model. This allows us to derive a complete description of minimal Markov bases and minimal invariant Markov bases for decomposable models.
منابع مشابه
Markov bases of decomposable models for contingency tables
We study Markov bases of hierarchical models in general and those of decomposable models in particular for multiway contingency tables by determining the structure of fibers of sample size two. We prove that the number of elements of fibers of sample size two are powers of two and we characterize the primitive moves (i.e. square-free moves of degree two) of Markov bases in terms of connected co...
متن کاملMATHEMATICAL ENGINEERING TECHNICAL REPORTS Fibers of sample size two of hierarchical models and Markov bases of decomposable models for contingency tables
We study Markov bases of hierarchical models in general and those of decomposable models in particular for multiway contingency tables by determining the structure of fibers of sample size two. We prove that the number of elements of fibers of sample size two are powers of two and we characterizes the primitive moves of Markov bases in terms of connected components of a certain graph defined fr...
متن کاملMarkov Bases for Decomposable Graphical Models
In this paper we show that primitive data swaps or moves are the only moves that have to be included in a Markov basis that links all the contingency tables having a set of fixed marginals when this set of marginals induce a decomposable independence graph. We give formulas that fully identify such Markov bases and show how to use these formulas to dynamically generate random moves.
متن کاملMinimal basis for connected Markov chain over 3× 3×K contingency tables with fixed two-dimensional marginals
We consider connected Markov chain for sampling 3 × 3 × K contingency tables having fixed two-dimensional marginal totals. Such sampling arises in performing various tests of the hypothesis of no three-factor interactions. Markov chain algorithm is a valuable tool for evaluating p values, especially for sparse data sets where large-sample theory does not work well. For constructing a connected ...
متن کاملIndispensable monomials of toric ideals and Markov bases
Extending the notion of indispensable binomials of a toric ideal ((14), (7)), we define indispensable monomials of a toric ideal and establish some of their properties. They are useful for searching indispensable binomials of a toric ideal and for proving the existence or non-existence of a unique minimal system of binomials generators of a toric ideal. Some examples of indispensable monomials ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008