Low Na, High K Diet and the Role of Aldosterone in BK-Mediated K Excretion

نویسندگان

  • Ryan J. Cornelius
  • Donghai Wen
  • Huaqing Li
  • Yang Yuan
  • Jun Wang-France
  • Paige C. Warner
  • Steven C. Sansom
چکیده

A low Na, high K diet (LNaHK) is associated with a low rate of cardiovascular (CV) disease in many societies. Part of the benefit of LNaHK relies on its diuretic effects; however, the role of aldosterone (aldo) in the diuresis is not understood. LNaHK mice exhibit an increase in renal K secretion that is dependent on the large, Ca-activated K channel, (BK-α with accessory BK-β4; BK-α/β4). We hypothesized that aldo causes an osmotic diuresis by increasing BK-α/β4-mediated K secretion in LNaHK mice. We found that the plasma aldo concentration (P[aldo]) was elevated by 10-fold in LNaHK mice compared with control diet (Con) mice. We subjected LNaHK mice to either sham surgery (sham), adrenalectomy (ADX) with low aldo replacement (ADX-LA), or ADX with high aldo replacement (ADX-HA). Compared to sham, the urinary flow, K excretion rate, transtubular K gradient (TTKG), and BK-α and BK-β4 expressions, were decreased in ADX-LA, but not different in ADX-HA. BK-β4 knockout (β4KO) and WT mice exhibited similar K clearance and TTKG in the ADX-LA groups; however, in sham and ADX-HA, the K clearance and TTKG of β4KO were less than WT. In response to amiloride treatment, the osmolar clearance was increased in WT Con, decreased in WT LNaHK, and unchanged in β4KO LNaHK. These data show that the high P[aldo] of LNaHK mice is necessary to generate a high rate of BK-α/β4-mediated K secretion, which creates an osmotic diuresis that may contribute to a reduction in CV disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bicarbonate promotes BK-α/β4-mediated K excretion in the renal distal nephron.

Ca-activated K channels (BK), which are stimulated by high distal nephron flow, are utilized during high-K conditions to remove excess K. Because BK predominantly reside with BK-β4 in acid/base-transporting intercalated cells (IC), we determined whether BK-β4 knockout mice (β4KO) exhibit deficient K excretion when consuming a high-K alkaline diet (HK-alk) vs. high-K chloride diet (HK-Cl). When ...

متن کامل

Effect of aldosterone on BK channel expression in mammalian cortical collecting duct.

Apical large-conductance Ca(2+)-activated K(+) (BK) channels in the cortical collecting duct (CCD) mediate flow-stimulated K(+) secretion. Dietary K(+) loading for 10-14 days leads to an increase in BK channel mRNA abundance, enhanced flow-stimulated K(+) secretion in microperfused CCDs, and a redistribution of immunodetectable channels from an intracellular pool to the apical membrane (Najjar ...

متن کامل

Faecal dry weight and potassium are related to faecal sodium and plasma aldosterone in rats chronically fed on varying amounts of sodium or potassium chlorides.

Recent studies have shown that faecal residue (dry weight) and Na and K increase with increasing levels of dietary fibre, an effect which may be related to unstirred layers that slow absorption and the flow rate of chyme through the gastrointestinal tract. Salts of Na are the primary osmotic components of chyme and influence both retention of fluid in the bowel and transit of fluid from the sma...

متن کامل

Collecting duct-specific knockout of endothelin-1 causes hypertension and sodium retention.

In vitro studies suggest that collecting duct-derived (CD-derived) endothelin-1 (ET-1) can regulate renal Na reabsorption; however, the physiologic role of CD-derived ET-1 is unknown. Consequently, the physiologic effect of selective disruption of the ET-1 gene in the CD of mice was determined. Mice heterozygous for aquaporin2 promoter Cre recombinase and homozygous for loxP-flanked exon 2 of t...

متن کامل

Cell-specific regulation of L-WNK1 by dietary K.

Flow-induced K(+) secretion in the aldosterone-sensitive distal nephron is mediated by high-conductance Ca(2+)-activated K(+) (BK) channels. Familial hyperkalemic hypertension (pseudohypoaldosteronism type II) is an inherited form of hypertension with decreased K(+) secretion and increased Na(+) reabsorption. This disorder is linked to mutations in genes encoding with-no-lysine kinase 1 (WNK1),...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015