Constrained Differential Optimization
نویسندگان
چکیده
Many optimization models of neural networks need constraints to restrict the space of outputs to a subspace which satisfies external criteria. Optimizations using energy methods yield "forces" which act upon the state of the neural network. The penalty method, in which quadratic energy constraints are added to an existing optimization energy, has become popular recently, but is not guaranteed to satisfy the constraint conditions when there are other forces on the neural model or when there are multiple constraints. In this paper, we present the basic differential multiplier method (BDMM), which satisfies constraints exactly; we create forces which gradually apply the constraints over time, using "neurons" that estimate Lagrange multipliers. The basic differential multiplier method is a differential version of the method of multipliers from Numerical Analysis. We prove that the differential equations locally converge to a constrained minimum. Examples of applications of the differential method of multipliers include enforcing permutation codewords in the analog decoding problem and enforcing valid tours in the traveling salesman problem.
منابع مشابه
OPTIMAL CONSTRAINED DESIGN OF STEEL STRUCTURES BY DIFFERENTIAL EVOLUTIONARY ALGORITHMS
Structural optimization, when approached by conventional (gradient based) minimization algorithms presents several difficulties, mainly related to computational aspects for the huge number of nonlinear analyses required, that regard both Objective Functions (OFs) and Constraints. Moreover, from the early '80s to today's, Evolutionary Algorithms have been successfully developed and applied as a ...
متن کاملOptimization of the Prismatic Core Sandwich Panel under Buckling Load and Yield Stress Constraints using an Improved Constrained Differential Evolution Algorithm
In this study, weight optimization of the prismatic core sandwich panel under transverse and longitudinal loadings has been independently investigated. To solve the optimization problems corresponding to the mentioned loadings, a new Improved Constrained Differential Evolution (ICDE) algorithm based on the multi-objective constraint handling method is implemented. The constraints of the problem...
متن کاملAn efficient one-layer recurrent neural network for solving a class of nonsmooth optimization problems
Constrained optimization problems have a wide range of applications in science, economics, and engineering. In this paper, a neural network model is proposed to solve a class of nonsmooth constrained optimization problems with a nonsmooth convex objective function subject to nonlinear inequality and affine equality constraints. It is a one-layer non-penalty recurrent neural network based on the...
متن کاملConstrained Nonlinear Optimal Control via a Hybrid BA-SD
The non-convex behavior presented by nonlinear systems limits the application of classical optimization techniques to solve optimal control problems for these kinds of systems. This paper proposes a hybrid algorithm, namely BA-SD, by combining Bee algorithm (BA) with steepest descent (SD) method for numerically solving nonlinear optimal control (NOC) problems. The proposed algorithm includes th...
متن کاملμJADEε: Micro adaptive differential evolution to solve constrained optimization problems
A highly competitive micro evolutionary algorithm to solve unconstrained optimization problems called μJADE (micro adaptive differential evolution), is adapted to deal with constrained search spaces. Two constraint-handling techniques (the feasibility rules and the ε-constrained method) are tested in μJADE and their performance is analyzed. The most competitive version is then compared against ...
متن کاملAn improved (μ + λ)-constrained differential evolution for constrained optimization
Article history: Received 3 March 2011 Received in revised form 15 November 2011 Accepted 7 January 2012 Available online xxxx
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1987