Exploiting subtle structural differences in heavy-atom derivatives for experimental phasing.
نویسندگان
چکیده
Structure determination using the single isomorphous replacement (SIR) or single-wavelength anomalous diffraction (SAD) methods with weak derivatives remains very challenging. In a recent structure determination of glycoprotein E2 from bovine viral diarrhea virus, three isomorphous uranium-derivative data sets were merged to obtain partially interpretable initial experimental maps. Small differences between them were then exploited by treating them as three independent SAD data sets plus three circular pairwise SIR data sets to improve the experimental maps. Here, how such subtle structural differences were exploited for experimental phasing is described in detail. The basis for why this approach works is also provided: the effective resolution of isomorphous signals between highly isomorphous derivatives is often much higher than the effective resolution of the anomalous signals of individual derivative data sets. Hence, the new phasing approaches outlined here will be generally applicable to structure determinations involving weak derivatives.
منابع مشابه
Facilitating best practices in collecting anomalous scattering data for de novo structure solution at the ESRF Structural Biology Beamlines.
The constant evolution of synchrotron structural biology beamlines, the viability of screening protein crystals for a wide range of heavy-atom derivatives, the advent of efficient protein labelling and the availability of automatic data-processing and structure-solution pipelines have combined to make de novo structure solution in macromolecular crystallography a less arduous task. Nevertheless...
متن کاملCorrelated phasing of multiple isomorphous replacement data.
Substantial highly correlated differences sometimes exist between a series of heavy-atom derivatives of a macromolecule and the native structure. Use of such a series of derivatives for phase determination by multiple isomorphous replacement (MIR) has been difficult because MIR analysis has treated errors as independent. A simple Bayesian approach has been used to derive probability distributio...
متن کاملA rational approach to heavy-atom derivative screening
Despite the development in recent times of a range of techniques for phasing macromolecules, the conventional heavy-atom derivatization method still plays a significant role in protein structure determination. However, this method has become less popular in modern high-throughput oriented crystallography, mostly owing to its trial-and-error nature, which often results in lengthy empirical searc...
متن کاملFeatures of the secondary structure of a protein molecule from powder diffraction data.
Protein powder diffraction is shown to be suitable for obtaining de novo solutions to the phase problem at low resolution via phasing methods such as the isomorphous replacement method. Two heavy-atom derivatives (a gadolinium derivative and a holmium derivative) of the tetragonal form of hen egg-white lysozyme were crystallized at room temperature. Using synchrotron radiation, high-quality pow...
متن کاملInitiating heavy-atom-based phasing by multi-dimensional molecular replacement.
To obtain an electron-density map from a macromolecular crystal the phase problem needs to be solved, which often involves the use of heavy-atom derivative crystals and concomitant heavy-atom substructure determination. This is typically performed by dual-space methods, direct methods or Patterson-based approaches, which however may fail when only poorly diffracting derivative crystals are avai...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Acta crystallographica. Section D, Biological crystallography
دوره 70 Pt 7 شماره
صفحات -
تاریخ انتشار 2014