MS-TWSVM: Mahalanobis distance-based Structural Twin Support Vector Machine

نویسندگان

  • Ramin Rezvani-KhorashadiZadeh
  • Reza Monsefi
چکیده

The distribution information of data points in two classes as the structural information is inserted into the classifiers to improve their generalization performance. Recently many algorithms such as S-TWSVM has used this information to construct two nonparallel hyperplanes which each one lies as close as possible to one class and being far away from the other. It is well known that different classes have different data distribution in real world problems, thus the covariance matrices of these classes are not the same. In these situations, the Mahalanobis is often more popular than Euclidean as a measure of distance. In this paper, in addition to apply the idea of S-TWSVM, the classical Euclidean distance is replaced by Mahalanobis distance which leads to simultaneously consider the covariance matrices of the two classes. By this modification, the orientation information in two classes can be better exploited than S-TWSVM. The experiments indicate our proposed algorithm is often superior to other learning algorithms in terms of generalization performance.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Real-Time Interference Monitoring Technique for GNSS Based on a Twin Support Vector Machine Method

Interferences can severely degrade the performance of Global Navigation Satellite System (GNSS) receivers. As the first step of GNSS any anti-interference measures, interference monitoring for GNSS is extremely essential and necessary. Since interference monitoring can be considered as a classification problem, a real-time interference monitoring technique based on Twin Support Vector Machine (...

متن کامل

Mixed Kernel Twin Support Vector Machines Based on the Shuffled Frog Leaping Algorithm

The efficiency and performance of Twin Support Vector Machines (TWSVM) is better than the traditional support vector machines when it deals with the problems. However, it also has some problems. As the same as the traditional support vector machines, its parameters are difficult to be appointed and it is not easy to select the appropriate kernel function. TWSVM generally selects the Gaussian ra...

متن کامل

Twin Support Vector Machines Based on Quantum Particle Swarm Optimization

Twin Support Vector Machines (TWSVM) are developed on the basis of Proximal Support Vector Machines (PSVM) and Proximal Support Vector Machine based on the generalized eigenvalues(GEPSVM). The solving of binary classification problem is converted to the solving of two smaller quadratic programming problems by TWSVM. And then it gets two non-parallel hyperplanes. Its efficiency of dealing with t...

متن کامل

Twin Support Vector Machines Based on the Mixed Kernel function

The efficiency and performance of the Twin Support Vector Machines (TWSVM) are better than the traditional support vector machines when it deals with the problems. However, it also has the problem of selecting kernel functions. Generally, TWSVM selects the Gaussian radial basis kernel function. Although it has a strong learning ability, its generalization ability is relatively weak. In a certai...

متن کامل

Least Squares Twin Support Vector Machine for Multi-Class Classification

Twin support vector machine (TWSVM) was initially designed for binary classification. However, real-world problems often require the discrimination more than two categories. To tackle multi-class classification problem, in this paper, a multiple least squares twin support vector machine is proposed. Our Multi-LSTSVM solves K quadratic programming problems (QPPs) to obtain K hyperplanes, each pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016