2011 / 22 VAR forecasting using Bayesian variable selection
نویسنده
چکیده
This paper develops methods for automatic selection of variables in Bayesian vector autoregressions (VARs) using the Gibbs sampler. In particular, I provide computationally efficient algorithms for stochastic variable selection in generic linear and nonlinear models, as well as models of large dimensions. The performance of the proposed variable selection method is assessed in forecasting three major macroeconomic time series of the UK economy. Databased restrictions of VAR coefficients can help improve upon their unrestricted counterparts in forecasting, and in many cases they compare favorably to shrinkage estimators.
منابع مشابه
Forecasting in VAR models with large datasets
This paper deals with model selection and forecasting in vector autoregressions (VARs) in situations where the set of available predictors is inconveniently large to accommodate with methods and diagnostics used in traditional small-scale models. Available information over this large dataset can be summarized into a considerably smaller set of variables through factors estimated by the dynamic ...
متن کاملBayesian Rank Selection in Multivariate Regression
Estimating the rank of the coefficient matrix is a major challenge in multivariate regression, including vector autoregression (VAR). In this paper, we develop a novel fully Bayesian approach that allows for rank estimation. The key to our approach is reparameterizing the coefficient matrix using its singular value decomposition and conducting Bayesian inference on the decomposed parameters. By...
متن کاملComparison of Neural Network Models, Vector Auto Regression (VAR), Bayesian Vector-Autoregressive (BVAR), Generalized Auto Regressive Conditional Heteroskedasticity (GARCH) Process and Time Series in Forecasting Inflation in Iran
This paper has two aims. The first is forecasting inflation in Iran using Macroeconomic variables data in Iran (Inflation rate, liquidity, GDP, prices of imported goods and exchange rates) , and the second is comparing the performance of forecasting vector auto regression (VAR), Bayesian Vector-Autoregressive (BVAR), GARCH, time series and neural network models by which Iran's inflation is for...
متن کاملBayesian variable selection for binary response models and direct marketing forecasting
0957-4174/$ see front matter 2010 Elsevier Ltd. A doi:10.1016/j.eswa.2010.04.077 * Corresponding author. Tel.: +852 2616 8245; fax: E-mail addresses: [email protected] (G. Cui), mlw [email protected] (G. Zhang). Selecting good variables to build forecasting models is a major challenge for direct marketing given the increasing amount and variety of data. This study adopts the Bayesian variable sel...
متن کامل4/RT/98 - Bayesian VAR Models for Forecasting Irish Inflation
In this paper we focus on the development of multiple time series models for forecasting Irish Inflation. The Bayesian approach to the estimation of vector autoregressive (VAR) models is employed. This allows the estimated models combine the evidence in the data with any prior information which may also be available. A large selection of inflation indicators are assessed as potential candidates...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011