The FOXO3a transcription factor regulates cardiac myocyte size downstream of AKT signaling.

نویسندگان

  • Carsten Skurk
  • Yasuhiro Izumiya
  • Henrike Maatz
  • Peter Razeghi
  • Ichiro Shiojima
  • Marco Sandri
  • Kaori Sato
  • Ling Zeng
  • Stephan Schiekofer
  • David Pimentel
  • Stewart Lecker
  • Heinrich Taegtmeyer
  • Alfred L Goldberg
  • Kenneth Walsh
چکیده

Although signaling mechanisms inducing cardiac hypertrophy have been extensively studied, little is known about the mechanisms that reverse cardiac hypertrophy. Here, we describe the existence of a similar Akt/forkhead signaling axis in cardiac myocytes in vitro and in vivo, which is regulated by insulin, insulin-like growth factor (IGF), stretch, pressure overload, and angiotensin II stimulation. FOXO3a gene transfer prevented both IGF and stretch-induced hypertrophy in rat neonatal cardiac myocyte cultures in vitro. Transduction with FOXO3a also caused a significant reduction in cardiomyocyte size in mouse hearts in vivo. Akt/FOXO signaling regulated the expression of multiple atrophy-related genes "atrogenes," including the ubiquitin ligase atrogin-1 (MAFbx). In cardiac myocyte cultures, transduction with constitutively active Akt or treatment with IGF suppressed atrogin-1 mRNA expression, whereas transduction with FOXO3a stimulated its expression. FOXO3a transduction activated the atrogin-1 promoter in both cultured myocytes and mouse heart. Thus, in cardiomyocytes, as in skeletal muscle, FOXO3a activates an atrogene transcriptional program, which retards or prevents hypertrophy and is down-regulated by multiple physiological and pathological stimuli of myocyte growth.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Critical Role for FoxO3a-Dependent Regulation of p21 in Response to Statin Signaling in Cardiac Myocytes

Statins are widely used clinical drugs that exert beneficial growth-suppressive effects in patients with cardiac hypertrophy. We investigated the role of the cell cycle inhibitor p21 (p21) in statin-dependent inhibition of hypertrophic growth in postmitotic cardiomyocytes. We demonstrate that lovastatin fails to inhibit cardiac hypertrophy to angiotensin II in p21 / mice and that reconstitution...

متن کامل

FOXO3a regulates glycolysis via transcriptional control of tumor suppressor TSC1.

Akt signal transduction induces coordinated increases in glycolysis and apoptosis resistance in a broad spectrum of cancers. Downstream of Akt, the FoxO transcription factors regulate apoptosis via Bim, but the contributions of FoxOs in regulating Akt-induced glycolysis are not well described. We find that FoxO3a knockdown is sufficient to induce apoptosis resistance in conjunction with elevate...

متن کامل

FOXO3a-dependent regulation of Puma in response to cytokine/growth factor withdrawal

Puma is an essential mediator of p53-dependent and -independent apoptosis in vivo. In response to genotoxic stress, Puma is induced in a p53-dependent manner. However, the transcription factor driving Puma up-regulation in response to p53-independent apoptotic stimuli has yet to be identified. Here, we show that FOXO3a up-regulates Puma expression in response to cytokine or growth factor depriv...

متن کامل

Expression Analysis of Foxo3a Gene in Pediatric Acute Lymphoblastic Leukemia in Southern Iranian Population

Background: Acute lymphoblastic leukemia (ALL), the most common childhood cancer with a peak incidence in children from 2-5 years old, might be associated with poor prognosis and resistance to therapy in specific cytogenetic backgrounds. FoxO3a, a member of the forkhead class ‘O’ (FoxO) transcription factors, is a main downstream target of PI3K/AKT pathway which regulates different ...

متن کامل

FOXO3a is a major target of inactivation by PI3K/AKT signaling in aggressive neuroblastoma.

Neuroblastoma is a pediatric tumor of the peripheral sympathetic nervous system with a highly variable prognosis. Activation of the phosphoinositide 3-kinase (PI3K)/AKT pathway in neuroblastoma is correlated with poor patient prognosis, but the precise downstream effectors mediating this effect have not been determined. Here we identify the forkhead transcription factor FOXO3a as a key target o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 280 21  شماره 

صفحات  -

تاریخ انتشار 2005