Cubical Cohomology Ring of 3D Pictures
نویسندگان
چکیده
Cohomology and cohomology ring of three-dimensional (3D) objects are topological invariants that characterize holes and their relations. Cohomology ring has been traditionally computed on simplicial complexes. Nevertheless, cubical complexes deal directly with the voxels in 3D images, no additional triangulation is necessary, facilitating efficient algorithms for the computation of topological invariants in the image context. In this paper, we present formulas to directly compute the cohomology ring of 3D cubical complexes without making use of any additional triangulation. Starting from a cubical complex Q that represents a 3D binary-valued digital picture whose foreground has one connected component, we compute first the cohomological information on the boundary of the object, ∂Q by an incremental technique; then, using a face reduction algorithm, we compute it on the whole object; finally, applying the mentioned formulas, the cohomology ring is computed from such information.
منابع مشابه
Cubical cohomology ring of 3D photographs
Cohomology groups and the cohomology ring of threedimensional (3D) objects are topological invariants that characterize holes and their relations. Cohomology ring has been traditionally computed on simplicial complexes. Nevertheless, cubical complexes deal directly with the voxels in 3D images, no additional triangulation is necessary. This could facilitate efficient algorithms for the computat...
متن کاملOn the Cohomology of 3D Digital Images
We propose a method for computing the cohomology ring of three–dimensional (3D) digital binary–valued pictures. We obtain the cohomology ring of a 3D digital binary–valued picture I, via a simplicial complex K(I) topologically representing (up to isomorphisms of pictures) the picture I. The usefulness of a simplicial description of the “digital” cohomology ring of 3D digital binary– valued pict...
متن کاملComputing The Cubical Cohomology Ring
The goal of this work is to establish a new algorithm for computing the cohomology ring of cubical complexes. The cubical structure enables an explicit recurrence formula for the cup product. We derive this formula and, next, show how to extend the Mrozek and Batko [7] homology coreduction algorithm to the cohomology ring structure. The implementation of the algorithm is a work in progress. Thi...
متن کاملCubical Cohomology Ring: Algorithmic Approach
A cohomology ring algorithm in a dimension-independent framework of combinatorial cubical complexes is developed with the aim of applying it to the topological analysis of high-dimensional data. This approach is convenient in the cup-product computation and motivated, among others, by interpreting pixels or voxels in digital images as cubes. The S-complex theory and so called co-reductions are ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010