A new identification algorithm for allpass systems by higher-order statistics

نویسندگان

  • Chong-Yung Chi
  • Jung-Yuan Kung
چکیده

Based on a single cumulant of any order M > 3, a new allpass system identification algorithm with only non-Gaussian output measurements is proposed in this paper. The proposed algorithm, which includes both parameter estimation and order determination of linear time-invariant (LTI) allpass systems, outperforms other cumulant based methods such as least-squares estimators simply due to the more accurate model (allpass model) used by the former. It is applicable in channel equalization for the case of a phase distorted channel. Moreover, the well-known (minimum-phase) prediction error filter has been popularly used to deconvolve seismic signals where the source wavelet can be nonminimum phase * Corresponding author. 0165-1684/95/%9.50

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blind Estimation of ARMA Systems

1 : In this paper, we present an approach to blind estimation of non-minimum phase ARMA models using fourth order statistics. The algorithm follows a Residual Time Series (RTS) procedure, which sequentially identiies the AR and MA parts. In step 1 of the RTS concept, the AR estimation is geared to deliver the shortest impulse response of the overall system, so that a new fast approach to MA sys...

متن کامل

A Higher Order Online Lyapunov-Based Emotional Learning for Rough-Neural Identifiers

o enhance the performances of rough-neural networks (R-NNs) in the system identification‎, ‎on the base of emotional learning‎, ‎a new stable learning algorithm is developed for them‎. ‎This algorithm facilitates the error convergence by increasing the memory depth of R-NNs‎. ‎To this end‎, ‎an emotional signal as a linear combination of identification error and its differences is used to achie...

متن کامل

Non-linear Fractional-Order Chaotic Systems Identification with Approximated Fractional-Order Derivative based on a Hybrid Particle Swarm Optimization-Genetic Algorithm Method

Although many mathematicians have searched on the fractional calculus since many years ago, but its application in engineering, especially in modeling and control, does not have many antecedents. Since there are much freedom in choosing the order of differentiator and integrator in fractional calculus, it is possible to model the physical systems accurately. This paper deals with time-domain id...

متن کامل

Signal Identification Using a New High Efficient Technique

Automatic signal type identification (ASTI) is an important topic for both the civilian and military domains. Most of the proposed identifiers can only recognize a few types of digital signal and usually need high levels of SNRs. This paper presents a new high efficient technique that includes a variety of digital signal types. In this technique, a combination of higher order moments and hi...

متن کامل

Extension of Higher Order Derivatives of Lyapunov Functions in Stability Analysis of Nonlinear Systems

The Lyapunov stability method is the most popular and applicable stability analysis tool of nonlinear dynamic systems. However, there are some bottlenecks in the Lyapunov method, such as need for negative definiteness of the Lyapunov function derivative in the direction of the system’s solutions. In this paper, we develop a new theorem to dispense the need for negative definite-ness of Lyapunov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Signal Processing

دوره 41  شماره 

صفحات  -

تاریخ انتشار 1995