Robust ARX models with automatic order determination and Student’s t innovations
نویسندگان
چکیده
ARX models is a common class of models of dynamical systems. Here, we consider the case when the innovation process is not well described by Gaussian noise and instead propose to model the driving noise as Student's t distributed. The t distribution is more heavy tailed than the Gaussian distribution, which provides an increased robustness to data anomalies, such as outliers and missing observations. We use a Bayesian setting and design the models to also include an automatic order determination. Basically, this means that we infer knowledge about the posterior distribution of the model order from data. We consider two related models, one with a parametric model order and one with a sparseness prior on the ARX coe cients. We derive Markov chain Monte Carlo samplers to perform inference in these models. Finally, we provide three numerical illustrations with both simulated data and real EEG data to evaluate the proposed methods.
منابع مشابه
Hierarchical Bayesian ARX models for robust inference
Gaussian innovations are the typical choice in most ARX models but using other distributions such as the Student’s t could be useful. We demonstrate that this choice of distribution for the innovations provides an increased robustness to data anomalies, such as outliers and missing observations. We consider these models in a Bayesian setting and perform inference using numerical procedures base...
متن کاملHierarchical Bayesian approaches for robust inference in ARX models
ARX models in which the innovations are described by as Student’s t distributed instead of the typical Gaussian noise has certain advantages. In this paper, we consider such a model in a Bayesian setting and develop numerical procedures based on Markov Chain Monte Carlo methods to perform inference. This model includes automatic order determination by two alternative methods, based on a paramet...
متن کاملSignal Modeling and Classification Using a Robust Latent Space Model Based on t Distributions
Factor analysis is a statistical covariance modeling technique based on the assumption of normally distributed data. A mixture of factor analyzers can be hence viewed as a special case of Gaussian (normal) mixture models providing a mathematically sound framework for attribute space dimensionality reduction. A significant shortcoming of mixtures of factor analyzers is the vulnerability of norma...
متن کاملProjection-based Bayesian recursive estimation of ARX model with uniform innovations
Autoregressive model with exogenous inputs (ARX) is a widely-used black-box type model underlying adaptive predictors and controllers. Its innovations, stochastic unobserved stimulus of the model, are white, zero mean with time-invariant variance. Mostly, the innovations are assumed to be normal. It induces least squares as the adequate estimation procedure. The light tails of the normal distri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011