Tensor Decomposition for Compressing Recurrent Neural Network

نویسندگان

  • Andros Tjandra
  • Sakriani Sakti
  • Satoshi Nakamura
چکیده

In the machine learning fields, Recurrent Neural Network (RNN) has become a popular algorithm for sequential data modeling. However, behind the impressive performance, RNNs require a large number of parameters for both training and inference. In this paper, we are trying to reduce the number of parameters and maintain the expressive power from RNN simultaneously. We utilize several tensor decompositions method including CANDECOMP/PARAFAC (CP), Tucker decomposition and Tensor Train(TT) to re-parameterize the Gated Recurrent Unit (GRU) RNN. We evaluate all tensor-based RNNs performance on sequence modeling tasks with a various number of parameters. Based on our experiment results, TT-GRU achieved the best results in a various number of parameters compared to other decomposition methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Xpressive Power of Recurrent Neural Net - Works

Deep neural networks are surprisingly efficient at solving practical tasks, but the theory behind this phenomenon is only starting to catch up with the practice. Numerous works show that depth is the key to this efficiency. A certain class of deep convolutional networks – namely those that correspond to the Hierarchical Tucker (HT) tensor decomposition – has been proven to have exponentially hi...

متن کامل

Neuron Mathematical Model Representation of Neural Tensor Network for RDF Knowledge Base Completion

In this paper, a state-of-the-art neuron mathematical model of neural tensor network (NTN) is proposed to RDF knowledge base completion problem. One of the difficulties with the parameter of the network is that representation of its neuron mathematical model is not possible. For this reason, a new representation of this network is suggested that solves this difficulty. In the representation, th...

متن کامل

Expressive power of recurrent neural networks

Deep neural networks are surprisingly efficient at solving practical tasks, but the theory behind this phenomenon is only starting to catch up with the practice. Numerous works show that depth is the key to this efficiency. A certain class of deep convolutional networks – namely those that correspond to the Hierarchical Tucker (HT) tensor decomposition – has been proven to have exponentially hi...

متن کامل

Tensorial Recurrent Neural Networks for Longitudinal Data Analysis

Traditional Recurrent Neural Networks assume vectorized data as inputs. However many data from modern science and technology come in certain structures such as tensorial time series data. To apply the recurrent neural networks for this type of data, a vectorisation process is necessary, while such a vectorisation leads to the loss of the precise information of the spatial or longitudinal dimens...

متن کامل

Ultimate tensorization: compressing convolutional and FC layers alike

Convolutional neural networks excel in image recognition tasks, but this comes at the cost of high computational and memory complexity. To tackle this problem, [1] developed a tensor factorization framework to compress fully-connected layers. In this paper, we focus on compressing convolutional layers. We show that while the direct application of the tensor framework [1] to the 4-dimensional ke...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1802.10410  شماره 

صفحات  -

تاریخ انتشار 2018