A Parametric Approach to Gait Signature Extraction for Human Motion Identification

نویسندگان

  • Mohamed Rafi
  • Md. Ekramul Hamid
  • Mohamed Samiulla Khan
چکیده

The extraction and analysis of human gait characteristics using image sequences are currently an intense area of research. Identifying individuals using biometric methods has recently gained growing interest from computer vision researchers for security purposes at places like airport, banks etc. Gait recognition aims essentially to address this problem by identifying people at a distance based on the way they walk i.e., by tracking a number of feature points or gait signatures. We describe a new model-based feature extraction analysis is presented using Hough transform technique that helps to read the essential parameters used to generate gait signatures that automatically extracts and describes human gait for recognition. In the preprocessing steps, the picture frames taken from video sequences are given as input to Canny edge detection algorithm which helps to detect edges of the image by extracting foreground from background also it reduces the noise using Gaussian filter. The output from edge detection is given as input to the Hough transform. Using the Hough transform image, a clear line based model is designed to extract gait signatures. A major difficulty of the existing gait signature extraction methods are the good tracking the requisite feature points. In the proposed work, we have used five parameters to successfully extract the gait signatures. It is observed that when the camera is placed at 90 and 270 degrees, all the parameters used in the proposed work are clearly visible. The efficiency of the model is tested on a variety of body position and stride parameters recovered in different viewing conditions on a database consisting of 20 subjects walking at both an angled and frontal-parallel view with respect to the camera, both indoors and outdoors and find the method to be highly successful. The test results show good clarity rates, with a high level of confidence and it is suggested that the algorithm reported here could form the basis of a robust system for monitoring of gait.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Model-based Gait Recognition

Model-based Gait Recognition concerns identification using an underlying mathematical construct(s) representing the discriminatory gait characteristics (be they static or dynamic), with a set of parameters and a set of logical and quantitative relationships between them. These models are often simplified based on justifiable assumptions such as the system only accounts for pathologically normal...

متن کامل

Gender Classification in Human Gait Using Support Vector Machine

We describe an automated system that classifies gender by utilising a set of human gait data. The gender classification system consists of three stages: i) detection and extraction of the moving human body and its contour from image sequences; ii) extraction of human gait signature by the joint angles and body points; and iii) motion analysis and feature extraction for classifying gender in the...

متن کامل

A Low Friction Demanding Approach in Gait Planning for Humanoid Robots During 3D Manoeuvres

This paper proposes a gait planning approach to reduce the required friction for a biped robot walking on various surfaces. To this end, a humanoid robot with 18 DOF is considered to develop a dynamics model for studying various 3D manoeuvres. Then, feasible trajectories are developed to alleviate the fluctuations on the upper body to resemble human-like walking. In order to generate feasible w...

متن کامل

Gait Extraction and Description by Evidence-Gathering

Using gait as a biometric is of increasing interest, yet there are few model-based, parametric, approaches to extract and describe moving articulated objects. One new approach can detect moving parametric objects by evidence gathering, hence accruing known performance advantages in terms of performance and occlusion. Here we show how that the new technique can be extended not only to extract a ...

متن کامل

IMU-Based Gait Recognition Using Convolutional Neural Networks and Multi-Sensor Fusion

The wide spread usage of wearable sensors such as in smart watches has provided continuous access to valuable user generated data such as human motion that could be used to identify an individual based on his/her motion patterns such as, gait. Several methods have been suggested to extract various heuristic and high-level features from gait motion data to identify discriminative gait signatures...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011