Variable Metric Reinforcement Learning Methods Applied to the Noisy Mountain Car Problem
نویسندگان
چکیده
Two variable metric reinforcement learning methods, the natural actor-critic algorithm and the covariance matrix adaptation evolution strategy, are compared on a conceptual level and analysed experimentally on the mountain car benchmark task with and without noise.
منابع مشابه
ART-Based Neuro-fuzzy Modelling Applied to Reinforcement Learning
The mountain car problem is a well-known task, often used for testing reinforcement learning algorithms. It is a problem with real valued state variables, which means that some kind of function approximation is required. In this paper, three reinforcement learning architectures are compared on the mountain car problem. Comparison results are presented, indicating the potentials of the actor-onl...
متن کاملPolicy Search using Paired Comparisons
Direct policy search is a practical way to solve reinforcement learning (RL) problems involving continuous state and action spaces. The goal becomes finding policy parameters that maximize a noisy objective function. The Pegasus method converts this stochastic optimization problem into a deterministic one, by using fixed start states and fixed random number sequences for comparing policies (Ng ...
متن کاملMetric learning for reinforcement learning agents
A key component of any reinforcement learning algorithm is the underlying representation used by the agent. While reinforcement learning (RL) agents have typically relied on hand-coded state representations, there has been a growing interest in learning this representation. While inputs to an agent are typically fixed (i.e., state variables represent sensors on a robot), it is desirable to auto...
متن کاملDecentralized Reinforcement Learning Applied to Mobile Robots
In this paper, decentralized reinforcement learning is applied to a control problem with a multidimensional action space. We propose a decentralized reinforcement learning architecture for a mobile robot, where the individual components of the commanded velocity vector are learned in parallel by separate agents. We empirically demonstrate that the decentralized architecture outperforms its cent...
متن کاملDirect Policy Search using Paired Statistical Tests
Direct policy search is a practical way to solve reinforcement learning problems involving continuous state and action spaces. The goal becomes finding policy parameters that maximize a noisy objective function. The Pegasus method converts this stochastic optimization problem into a deterministic one, by using fixed start states and fixed random number sequences for comparing policies (Ng & Jor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008