Punctate vascular expression1 is a novel maize gene required for leaf pattern formation that functions downstream of the trans-acting small interfering RNA pathway.
نویسندگان
چکیده
The maize (Zea mays) gene RAGGED SEEDLING2-R (RGD2-R) encodes an ARGONAUTE7-like protein required for the biogenesis of trans-acting small interfering RNA, which regulates the accumulation of AUXIN RESPONSE FACTOR3A transcripts in shoots. Although dorsiventral polarity is established in the narrow and cylindrical leaves of rgd2-R mutant plants, swapping of adaxial/abaxial epidermal identity occurs and suggests a model wherein RGD2 is required to coordinate dorsiventral and mediolateral patterning in maize leaves. Laser microdissection-microarray analyses of the rgd2-R mutant shoot apical meristem identified a novel gene, PUNCTATE VASCULAR EXPRESSION1 (PVE1), that is down-regulated in rgd2-R mutant apices. Transcripts of PVE1 provide an early molecular marker for vascular morphogenesis. Reverse genetic analyses suggest that PVE1 functions during vascular development and in mediolateral and dorsiventral patterning of maize leaves. Molecular genetic analyses of PVE1 and of rgd2-R;pve1-M2 double mutants suggest a model wherein PVE1 functions downstream of RGD2 in a pathway that intersects and interacts with the trans-acting small interfering RNA pathway.
منابع مشابه
Two small regulatory RNAs establish opposing fates of a developmental axis.
Small RNAs are important regulators of gene expression. In maize, adaxial/abaxial (dorsoventral) leaf polarity is established by an abaxial gradient of microRNA166 (miR166), which spatially restricts the expression domain of class III homeodomain leucine zipper (HD-ZIPIII) transcription factors that specify adaxial/upper fate. Here, we show that leafbladeless1 encodes a key component in the tra...
متن کاملragged seedling2 Encodes an ARGONAUTE7-like protein required for mediolateral expansion, but not dorsiventrality, of maize leaves.
Leaves arise from the flank of the shoot apical meristem and are asymmetrical along the adaxial/abaxial plane from inception. Mutations perturbing dorsiventral cell fate acquisition in a variety of species can result in unifacial (radially symmetrical) leaves lacking adaxial/abaxial polarity. However, mutations in maize (Zea mays) ragged seedling2 (rgd2) condition cylindrical leaves that mainta...
متن کاملGenome-Wide Analysis of leafbladeless1-Regulated and Phased Small RNAs Underscores the Importance of the TAS3 ta-siRNA Pathway to Maize Development
Maize leafbladeless1 (lbl1) encodes a key component in the trans-acting short-interfering RNA (ta-siRNA) biogenesis pathway. Correlated with a great diversity in ta-siRNAs and the targets they regulate, the phenotypes conditioned by mutants perturbing this small RNA pathway vary extensively across species. Mutations in lbl1 result in severe developmental defects, giving rise to plants with radi...
متن کاملSpecification of Leaf Polarity in Arabidopsis via the trans-Acting siRNA Pathway
Plants leaves develop proximodistal, dorsoventral (adaxial-abaxial), and mediolateral patterns following initiation. The Myb domain gene PHANTASTICA (PHAN) is required for adaxial fate in many plants , but the Arabidopsis ortholog ASYMMETRIC LEAVES1 (AS1) has milder effects, suggesting that alternate or redundant pathways exist . We describe enhancers of as1 with more elongate and dissected lea...
متن کاملRoles of dicer-like and argonaute proteins in TAS-derived small interfering RNA-triggered DNA methylation.
Trans-acting small interfering RNAs (ta-siRNAs; TAS) emerge as a class of plant-specific small RNAs that are initiated from microRNA-mediated cleavage of TAS gene transcripts. It has been revealed that ta-siRNAs are generated by the sequential activities of SUPPRESSOR OF GENE SILENCING3 (SGS3), RNA-DEPENDENT RNA POLYMERASE6 (RDR6), and DICER-LIKE4 (DCL4), and loaded into ARGONAUTE1 (AGO1) prote...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Plant physiology
دوره 159 4 شماره
صفحات -
تاریخ انتشار 2012